Derivatan av $$$- \frac{2 x}{x^{2} + 1}$$$

Kalkylatorn beräknar derivatan av $$$- \frac{2 x}{x^{2} + 1}$$$ och visar stegen.

Relaterade kalkylatorer: Kalkylator för logaritmisk derivering, Räknare för implicit derivering med steg

Lämna tomt för automatisk identifiering.
Lämna tomt om du inte behöver derivatan i en specifik punkt.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm $$$\frac{d}{dx} \left(- \frac{2 x}{x^{2} + 1}\right)$$$.

Lösning

Tillämpa konstantfaktorregeln $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ med $$$c = -2$$$ och $$$f{\left(x \right)} = \frac{x}{x^{2} + 1}$$$:

$${\color{red}\left(\frac{d}{dx} \left(- \frac{2 x}{x^{2} + 1}\right)\right)} = {\color{red}\left(- 2 \frac{d}{dx} \left(\frac{x}{x^{2} + 1}\right)\right)}$$

Tillämpa kvotregeln $$$\frac{d}{dx} \left(\frac{f{\left(x \right)}}{g{\left(x \right)}}\right) = \frac{\frac{d}{dx} \left(f{\left(x \right)}\right) g{\left(x \right)} - f{\left(x \right)} \frac{d}{dx} \left(g{\left(x \right)}\right)}{g^{2}{\left(x \right)}}$$$ med $$$f{\left(x \right)} = x$$$ och $$$g{\left(x \right)} = x^{2} + 1$$$:

$$- 2 {\color{red}\left(\frac{d}{dx} \left(\frac{x}{x^{2} + 1}\right)\right)} = - 2 {\color{red}\left(\frac{\frac{d}{dx} \left(x\right) \left(x^{2} + 1\right) - x \frac{d}{dx} \left(x^{2} + 1\right)}{\left(x^{2} + 1\right)^{2}}\right)}$$

Tillämpa potensregeln $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ med $$$n = 1$$$, det vill säga $$$\frac{d}{dx} \left(x\right) = 1$$$:

$$- \frac{2 \left(- x \frac{d}{dx} \left(x^{2} + 1\right) + \left(x^{2} + 1\right) {\color{red}\left(\frac{d}{dx} \left(x\right)\right)}\right)}{\left(x^{2} + 1\right)^{2}} = - \frac{2 \left(- x \frac{d}{dx} \left(x^{2} + 1\right) + \left(x^{2} + 1\right) {\color{red}\left(1\right)}\right)}{\left(x^{2} + 1\right)^{2}}$$

Derivatan av en summa/differens är summan/differensen av derivatorna:

$$- \frac{2 \left(x^{2} - x {\color{red}\left(\frac{d}{dx} \left(x^{2} + 1\right)\right)} + 1\right)}{\left(x^{2} + 1\right)^{2}} = - \frac{2 \left(x^{2} - x {\color{red}\left(\frac{d}{dx} \left(x^{2}\right) + \frac{d}{dx} \left(1\right)\right)} + 1\right)}{\left(x^{2} + 1\right)^{2}}$$

Derivatan av en konstant är $$$0$$$:

$$- \frac{2 \left(x^{2} - x \left({\color{red}\left(\frac{d}{dx} \left(1\right)\right)} + \frac{d}{dx} \left(x^{2}\right)\right) + 1\right)}{\left(x^{2} + 1\right)^{2}} = - \frac{2 \left(x^{2} - x \left({\color{red}\left(0\right)} + \frac{d}{dx} \left(x^{2}\right)\right) + 1\right)}{\left(x^{2} + 1\right)^{2}}$$

Tillämpa potensregeln $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ med $$$n = 2$$$:

$$- \frac{2 \left(x^{2} - x {\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)} + 1\right)}{\left(x^{2} + 1\right)^{2}} = - \frac{2 \left(x^{2} - x {\color{red}\left(2 x\right)} + 1\right)}{\left(x^{2} + 1\right)^{2}}$$

Förenkla:

$$- \frac{2 \left(1 - x^{2}\right)}{\left(x^{2} + 1\right)^{2}} = \frac{2 \left(x^{2} - 1\right)}{\left(x^{2} + 1\right)^{2}}$$

Alltså, $$$\frac{d}{dx} \left(- \frac{2 x}{x^{2} + 1}\right) = \frac{2 \left(x^{2} - 1\right)}{\left(x^{2} + 1\right)^{2}}$$$.

Svar

$$$\frac{d}{dx} \left(- \frac{2 x}{x^{2} + 1}\right) = \frac{2 \left(x^{2} - 1\right)}{\left(x^{2} + 1\right)^{2}}$$$A


Please try a new game Rotatly