Derivatan av $$$- \frac{141 p t}{800} + \frac{1673}{500}$$$ med avseende på $$$t$$$

Kalkylatorn kommer att beräkna derivatan av $$$- \frac{141 p t}{800} + \frac{1673}{500}$$$ med avseende på $$$t$$$, med steg som visas.

Relaterade kalkylatorer: Kalkylator för logaritmisk derivering, Räknare för implicit derivering med steg

Lämna tomt för automatisk identifiering.
Lämna tomt om du inte behöver derivatan i en specifik punkt.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm $$$\frac{d}{dt} \left(- \frac{141 p t}{800} + \frac{1673}{500}\right)$$$.

Lösning

Derivatan av en summa/differens är summan/differensen av derivatorna:

$${\color{red}\left(\frac{d}{dt} \left(- \frac{141 p t}{800} + \frac{1673}{500}\right)\right)} = {\color{red}\left(- \frac{d}{dt} \left(\frac{141 p t}{800}\right) + \frac{d}{dt} \left(\frac{1673}{500}\right)\right)}$$

Tillämpa konstantfaktorregeln $$$\frac{d}{dt} \left(c f{\left(t \right)}\right) = c \frac{d}{dt} \left(f{\left(t \right)}\right)$$$ med $$$c = \frac{141 p}{800}$$$ och $$$f{\left(t \right)} = t$$$:

$$- {\color{red}\left(\frac{d}{dt} \left(\frac{141 p t}{800}\right)\right)} + \frac{d}{dt} \left(\frac{1673}{500}\right) = - {\color{red}\left(\frac{141 p}{800} \frac{d}{dt} \left(t\right)\right)} + \frac{d}{dt} \left(\frac{1673}{500}\right)$$

Tillämpa potensregeln $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$ med $$$n = 1$$$, det vill säga $$$\frac{d}{dt} \left(t\right) = 1$$$:

$$- \frac{141 p {\color{red}\left(\frac{d}{dt} \left(t\right)\right)}}{800} + \frac{d}{dt} \left(\frac{1673}{500}\right) = - \frac{141 p {\color{red}\left(1\right)}}{800} + \frac{d}{dt} \left(\frac{1673}{500}\right)$$

Derivatan av en konstant är $$$0$$$:

$$- \frac{141 p}{800} + {\color{red}\left(\frac{d}{dt} \left(\frac{1673}{500}\right)\right)} = - \frac{141 p}{800} + {\color{red}\left(0\right)}$$

Alltså, $$$\frac{d}{dt} \left(- \frac{141 p t}{800} + \frac{1673}{500}\right) = - \frac{141 p}{800}$$$.

Svar

$$$\frac{d}{dt} \left(- \frac{141 p t}{800} + \frac{1673}{500}\right) = - \frac{141 p}{800}$$$A


Please try a new game Rotatly