Diagonalizar $$$\left[\begin{array}{cc}3 & -10\\1 & -4\end{array}\right]$$$
Sua entrada
Diagonalize $$$\left[\begin{array}{cc}3 & -10\\1 & -4\end{array}\right]$$$.
Solução
Primeiro, encontre os autovalores e autovetores (para ver os passos, consulte calculadora de autovalores e autovetores).
Autovalor: $$$1$$$, autovetor: $$$\left[\begin{array}{c}5\\1\end{array}\right]$$$.
Autovalor: $$$-2$$$, autovetor: $$$\left[\begin{array}{c}2\\1\end{array}\right]$$$.
Forme a matriz $$$P$$$, cuja coluna $$$i$$$ é o autovetor número $$$i$$$: $$$P = \left[\begin{array}{cc}5 & 2\\1 & 1\end{array}\right]$$$.
Forme a matriz diagonal $$$D$$$ cujo elemento na linha $$$i$$$, coluna $$$i$$$ é o autovalor nº $$$i$$$: $$$D = \left[\begin{array}{cc}1 & 0\\0 & -2\end{array}\right]$$$.
As matrizes $$$P$$$ e $$$D$$$ são tais que a matriz inicial $$$\left[\begin{array}{cc}3 & -10\\1 & -4\end{array}\right] = P D P^{-1}$$$.
$$$P^{-1} = \left[\begin{array}{cc}\frac{1}{3} & - \frac{2}{3}\\- \frac{1}{3} & \frac{5}{3}\end{array}\right]$$$ (para as etapas, consulte calculadora de matriz inversa.)
Resposta
$$$P = \left[\begin{array}{cc}5 & 2\\1 & 1\end{array}\right]$$$A
$$$D = \left[\begin{array}{cc}1 & 0\\0 & -2\end{array}\right]$$$A
$$$P^{-1} = \left[\begin{array}{cc}\frac{1}{3} & - \frac{2}{3}\\- \frac{1}{3} & \frac{5}{3}\end{array}\right]\approx \left[\begin{array}{cc}0.333333333333333 & -0.666666666666667\\-0.333333333333333 & 1.666666666666667\end{array}\right]$$$A