Integral de $$$y e^{2}$$$

A calculadora encontrará a integral/antiderivada de $$$y e^{2}$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int y e^{2}\, dy$$$.

Solução

Aplique a regra do múltiplo constante $$$\int c f{\left(y \right)}\, dy = c \int f{\left(y \right)}\, dy$$$ usando $$$c=e^{2}$$$ e $$$f{\left(y \right)} = y$$$:

$${\color{red}{\int{y e^{2} d y}}} = {\color{red}{e^{2} \int{y d y}}}$$

Aplique a regra da potência $$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ com $$$n=1$$$:

$$e^{2} {\color{red}{\int{y d y}}}=e^{2} {\color{red}{\frac{y^{1 + 1}}{1 + 1}}}=e^{2} {\color{red}{\left(\frac{y^{2}}{2}\right)}}$$

Portanto,

$$\int{y e^{2} d y} = \frac{y^{2} e^{2}}{2}$$

Adicione a constante de integração:

$$\int{y e^{2} d y} = \frac{y^{2} e^{2}}{2}+C$$

Resposta

$$$\int y e^{2}\, dy = \frac{y^{2} e^{2}}{2} + C$$$A


Please try a new game Rotatly