Integral de $$$- x \cot{\left(x \right)} + x$$$

A calculadora encontrará a integral/antiderivada de $$$- x \cot{\left(x \right)} + x$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int \left(- x \cot{\left(x \right)} + x\right)\, dx$$$.

Solução

Integre termo a termo:

$${\color{red}{\int{\left(- x \cot{\left(x \right)} + x\right)d x}}} = {\color{red}{\left(\int{x d x} - \int{x \cot{\left(x \right)} d x}\right)}}$$

Aplique a regra da potência $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ com $$$n=1$$$:

$$- \int{x \cot{\left(x \right)} d x} + {\color{red}{\int{x d x}}}=- \int{x \cot{\left(x \right)} d x} + {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=- \int{x \cot{\left(x \right)} d x} + {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$

Para a integral $$$\int{x \cot{\left(x \right)} d x}$$$, use integração por partes $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Sejam $$$\operatorname{u}=x$$$ e $$$\operatorname{dv}=\cot{\left(x \right)} dx$$$.

Então $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (os passos podem ser vistos ») e $$$\operatorname{v}=\int{\cot{\left(x \right)} d x}=\ln{\left(\sin{\left(x \right)} \right)}$$$ (os passos podem ser vistos »).

Portanto,

$$\frac{x^{2}}{2} - {\color{red}{\int{x \cot{\left(x \right)} d x}}}=\frac{x^{2}}{2} - {\color{red}{\left(x \cdot \ln{\left(\sin{\left(x \right)} \right)}-\int{\ln{\left(\sin{\left(x \right)} \right)} \cdot 1 d x}\right)}}=\frac{x^{2}}{2} - {\color{red}{\left(x \ln{\left(\sin{\left(x \right)} \right)} - \int{\ln{\left(\sin{\left(x \right)} \right)} d x}\right)}}$$

Esta integral não possui forma fechada:

$$\frac{x^{2}}{2} - x \ln{\left(\sin{\left(x \right)} \right)} + {\color{red}{\int{\ln{\left(\sin{\left(x \right)} \right)} d x}}} = \frac{x^{2}}{2} - x \ln{\left(\sin{\left(x \right)} \right)} + {\color{red}{\left(\frac{i x^{2}}{2} - x \ln{\left(1 - e^{2 i x} \right)} + x \ln{\left(\sin{\left(x \right)} \right)} + \frac{i \operatorname{Li}_{2}\left(e^{2 i x}\right)}{2}\right)}}$$

Portanto,

$$\int{\left(- x \cot{\left(x \right)} + x\right)d x} = \frac{x^{2}}{2} + \frac{i x^{2}}{2} - x \ln{\left(1 - e^{2 i x} \right)} + \frac{i \operatorname{Li}_{2}\left(e^{2 i x}\right)}{2}$$

Simplifique:

$$\int{\left(- x \cot{\left(x \right)} + x\right)d x} = \frac{x^{2} \left(1 + i\right)}{2} - x \ln{\left(1 - e^{2 i x} \right)} + \frac{i \operatorname{Li}_{2}\left(e^{2 i x}\right)}{2}$$

Adicione a constante de integração:

$$\int{\left(- x \cot{\left(x \right)} + x\right)d x} = \frac{x^{2} \left(1 + i\right)}{2} - x \ln{\left(1 - e^{2 i x} \right)} + \frac{i \operatorname{Li}_{2}\left(e^{2 i x}\right)}{2}+C$$

Resposta

$$$\int \left(- x \cot{\left(x \right)} + x\right)\, dx = \left(\frac{x^{2} \left(1 + i\right)}{2} - x \ln\left(1 - e^{2 i x}\right) + \frac{i \operatorname{Li}_{2}\left(e^{2 i x}\right)}{2}\right) + C$$$A


Please try a new game Rotatly