Integral de $$$\frac{x^{2}}{1 - x^{2}}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \frac{x^{2}}{1 - x^{2}}\, dx$$$.
Solução
Como o grau do numerador não é menor que o grau do denominador, realize a divisão longa de polinômios (os passos podem ser vistos »):
$${\color{red}{\int{\frac{x^{2}}{1 - x^{2}} d x}}} = {\color{red}{\int{\left(-1 + \frac{1}{1 - x^{2}}\right)d x}}}$$
Integre termo a termo:
$${\color{red}{\int{\left(-1 + \frac{1}{1 - x^{2}}\right)d x}}} = {\color{red}{\left(- \int{1 d x} + \int{\frac{1}{1 - x^{2}} d x}\right)}}$$
Aplique a regra da constante $$$\int c\, dx = c x$$$ usando $$$c=1$$$:
$$\int{\frac{1}{1 - x^{2}} d x} - {\color{red}{\int{1 d x}}} = \int{\frac{1}{1 - x^{2}} d x} - {\color{red}{x}}$$
Efetue a decomposição em frações parciais (os passos podem ser vistos »):
$$- x + {\color{red}{\int{\frac{1}{1 - x^{2}} d x}}} = - x + {\color{red}{\int{\left(\frac{1}{2 \left(x + 1\right)} - \frac{1}{2 \left(x - 1\right)}\right)d x}}}$$
Integre termo a termo:
$$- x + {\color{red}{\int{\left(\frac{1}{2 \left(x + 1\right)} - \frac{1}{2 \left(x - 1\right)}\right)d x}}} = - x + {\color{red}{\left(- \int{\frac{1}{2 \left(x - 1\right)} d x} + \int{\frac{1}{2 \left(x + 1\right)} d x}\right)}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=\frac{1}{2}$$$ e $$$f{\left(x \right)} = \frac{1}{x + 1}$$$:
$$- x - \int{\frac{1}{2 \left(x - 1\right)} d x} + {\color{red}{\int{\frac{1}{2 \left(x + 1\right)} d x}}} = - x - \int{\frac{1}{2 \left(x - 1\right)} d x} + {\color{red}{\left(\frac{\int{\frac{1}{x + 1} d x}}{2}\right)}}$$
Seja $$$u=x + 1$$$.
Então $$$du=\left(x + 1\right)^{\prime }dx = 1 dx$$$ (veja os passos »), e obtemos $$$dx = du$$$.
Logo,
$$- x - \int{\frac{1}{2 \left(x - 1\right)} d x} + \frac{{\color{red}{\int{\frac{1}{x + 1} d x}}}}{2} = - x - \int{\frac{1}{2 \left(x - 1\right)} d x} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2}$$
A integral de $$$\frac{1}{u}$$$ é $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- x - \int{\frac{1}{2 \left(x - 1\right)} d x} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = - x - \int{\frac{1}{2 \left(x - 1\right)} d x} + \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$
Recorde que $$$u=x + 1$$$:
$$- x + \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} - \int{\frac{1}{2 \left(x - 1\right)} d x} = - x + \frac{\ln{\left(\left|{{\color{red}{\left(x + 1\right)}}}\right| \right)}}{2} - \int{\frac{1}{2 \left(x - 1\right)} d x}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=\frac{1}{2}$$$ e $$$f{\left(x \right)} = \frac{1}{x - 1}$$$:
$$- x + \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} - {\color{red}{\int{\frac{1}{2 \left(x - 1\right)} d x}}} = - x + \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} - {\color{red}{\left(\frac{\int{\frac{1}{x - 1} d x}}{2}\right)}}$$
Seja $$$u=x - 1$$$.
Então $$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (veja os passos »), e obtemos $$$dx = du$$$.
Portanto,
$$- x + \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{x - 1} d x}}}}{2} = - x + \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2}$$
A integral de $$$\frac{1}{u}$$$ é $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- x + \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = - x + \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$
Recorde que $$$u=x - 1$$$:
$$- x + \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} = - x + \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{{\color{red}{\left(x - 1\right)}}}\right| \right)}}{2}$$
Portanto,
$$\int{\frac{x^{2}}{1 - x^{2}} d x} = - x - \frac{\ln{\left(\left|{x - 1}\right| \right)}}{2} + \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2}$$
Adicione a constante de integração:
$$\int{\frac{x^{2}}{1 - x^{2}} d x} = - x - \frac{\ln{\left(\left|{x - 1}\right| \right)}}{2} + \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2}+C$$
Resposta
$$$\int \frac{x^{2}}{1 - x^{2}}\, dx = \left(- x - \frac{\ln\left(\left|{x - 1}\right|\right)}{2} + \frac{\ln\left(\left|{x + 1}\right|\right)}{2}\right) + C$$$A