Integral de $$$x \cos{\left(\pi n x \right)}$$$ em relação a $$$x$$$

A calculadora encontrará a integral/primitiva de $$$x \cos{\left(\pi n x \right)}$$$ em relação a $$$x$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int x \cos{\left(\pi n x \right)}\, dx$$$.

Solução

Para a integral $$$\int{x \cos{\left(\pi n x \right)} d x}$$$, use integração por partes $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Sejam $$$\operatorname{u}=x$$$ e $$$\operatorname{dv}=\cos{\left(\pi n x \right)} dx$$$.

Então $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (os passos podem ser vistos ») e $$$\operatorname{v}=\int{\cos{\left(\pi n x \right)} d x}=\frac{\sin{\left(\pi n x \right)}}{\pi n}$$$ (os passos podem ser vistos »).

Logo,

$${\color{red}{\int{x \cos{\left(\pi n x \right)} d x}}}={\color{red}{\left(x \cdot \frac{\sin{\left(\pi n x \right)}}{\pi n}-\int{\frac{\sin{\left(\pi n x \right)}}{\pi n} \cdot 1 d x}\right)}}={\color{red}{\left(- \int{\frac{\sin{\left(\pi n x \right)}}{\pi n} d x} + \frac{x \sin{\left(\pi n x \right)}}{\pi n}\right)}}$$

Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=\frac{1}{\pi n}$$$ e $$$f{\left(x \right)} = \sin{\left(\pi n x \right)}$$$:

$$- {\color{red}{\int{\frac{\sin{\left(\pi n x \right)}}{\pi n} d x}}} + \frac{x \sin{\left(\pi n x \right)}}{\pi n} = - {\color{red}{\frac{\int{\sin{\left(\pi n x \right)} d x}}{\pi n}}} + \frac{x \sin{\left(\pi n x \right)}}{\pi n}$$

Seja $$$u=\pi n x$$$.

Então $$$du=\left(\pi n x\right)^{\prime }dx = \pi n dx$$$ (veja os passos »), e obtemos $$$dx = \frac{du}{\pi n}$$$.

Assim,

$$\frac{x \sin{\left(\pi n x \right)}}{\pi n} - \frac{{\color{red}{\int{\sin{\left(\pi n x \right)} d x}}}}{\pi n} = \frac{x \sin{\left(\pi n x \right)}}{\pi n} - \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{\pi n} d u}}}}{\pi n}$$

Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=\frac{1}{\pi n}$$$ e $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:

$$\frac{x \sin{\left(\pi n x \right)}}{\pi n} - \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{\pi n} d u}}}}{\pi n} = \frac{x \sin{\left(\pi n x \right)}}{\pi n} - \frac{{\color{red}{\frac{\int{\sin{\left(u \right)} d u}}{\pi n}}}}{\pi n}$$

A integral do seno é $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:

$$\frac{x \sin{\left(\pi n x \right)}}{\pi n} - \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{\pi^{2} n^{2}} = \frac{x \sin{\left(\pi n x \right)}}{\pi n} - \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{\pi^{2} n^{2}}$$

Recorde que $$$u=\pi n x$$$:

$$\frac{x \sin{\left(\pi n x \right)}}{\pi n} + \frac{\cos{\left({\color{red}{u}} \right)}}{\pi^{2} n^{2}} = \frac{x \sin{\left(\pi n x \right)}}{\pi n} + \frac{\cos{\left({\color{red}{\pi n x}} \right)}}{\pi^{2} n^{2}}$$

Portanto,

$$\int{x \cos{\left(\pi n x \right)} d x} = \frac{x \sin{\left(\pi n x \right)}}{\pi n} + \frac{\cos{\left(\pi n x \right)}}{\pi^{2} n^{2}}$$

Simplifique:

$$\int{x \cos{\left(\pi n x \right)} d x} = \frac{\pi n x \sin{\left(\pi n x \right)} + \cos{\left(\pi n x \right)}}{\pi^{2} n^{2}}$$

Adicione a constante de integração:

$$\int{x \cos{\left(\pi n x \right)} d x} = \frac{\pi n x \sin{\left(\pi n x \right)} + \cos{\left(\pi n x \right)}}{\pi^{2} n^{2}}+C$$

Resposta

$$$\int x \cos{\left(\pi n x \right)}\, dx = \frac{\pi n x \sin{\left(\pi n x \right)} + \cos{\left(\pi n x \right)}}{\pi^{2} n^{2}} + C$$$A


Please try a new game Rotatly