Integral de $$$\omega t \cos{\left(2 \right)}$$$ em relação a $$$t$$$

A calculadora encontrará a integral/primitiva de $$$\omega t \cos{\left(2 \right)}$$$ em relação a $$$t$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int \omega t \cos{\left(2 \right)}\, dt$$$.

As funções trigonométricas esperam o argumento em radianos. Para inserir o argumento em graus, multiplique-o por pi/180, por exemplo, escreva 45° como 45*pi/180, ou use a função correspondente acrescentando 'd', por exemplo, escreva sin(45°) como sind(45).

Solução

Aplique a regra do múltiplo constante $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ usando $$$c=\omega \cos{\left(2 \right)}$$$ e $$$f{\left(t \right)} = t$$$:

$${\color{red}{\int{\omega t \cos{\left(2 \right)} d t}}} = {\color{red}{\omega \cos{\left(2 \right)} \int{t d t}}}$$

Aplique a regra da potência $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ com $$$n=1$$$:

$$\omega \cos{\left(2 \right)} {\color{red}{\int{t d t}}}=\omega \cos{\left(2 \right)} {\color{red}{\frac{t^{1 + 1}}{1 + 1}}}=\omega \cos{\left(2 \right)} {\color{red}{\left(\frac{t^{2}}{2}\right)}}$$

Portanto,

$$\int{\omega t \cos{\left(2 \right)} d t} = \frac{\omega t^{2} \cos{\left(2 \right)}}{2}$$

Adicione a constante de integração:

$$\int{\omega t \cos{\left(2 \right)} d t} = \frac{\omega t^{2} \cos{\left(2 \right)}}{2}+C$$

Resposta

$$$\int \omega t \cos{\left(2 \right)}\, dt = \frac{\omega t^{2} \cos{\left(2 \right)}}{2} + C$$$A


Please try a new game Rotatly