Integral de $$$x \ln\left(x^{2}\right)$$$

A calculadora encontrará a integral/antiderivada de $$$x \ln\left(x^{2}\right)$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int x \ln\left(x^{2}\right)\, dx$$$.

Solução

A entrada é reescrita como: $$$\int{x \ln{\left(x^{2} \right)} d x}=\int{2 x \ln{\left(x \right)} d x}$$$.

Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=2$$$ e $$$f{\left(x \right)} = x \ln{\left(x \right)}$$$:

$${\color{red}{\int{2 x \ln{\left(x \right)} d x}}} = {\color{red}{\left(2 \int{x \ln{\left(x \right)} d x}\right)}}$$

Para a integral $$$\int{x \ln{\left(x \right)} d x}$$$, use integração por partes $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Sejam $$$\operatorname{u}=\ln{\left(x \right)}$$$ e $$$\operatorname{dv}=x dx$$$.

Então $$$\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$ (os passos podem ser vistos ») e $$$\operatorname{v}=\int{x d x}=\frac{x^{2}}{2}$$$ (os passos podem ser vistos »).

Portanto,

$$2 {\color{red}{\int{x \ln{\left(x \right)} d x}}}=2 {\color{red}{\left(\ln{\left(x \right)} \cdot \frac{x^{2}}{2}-\int{\frac{x^{2}}{2} \cdot \frac{1}{x} d x}\right)}}=2 {\color{red}{\left(\frac{x^{2} \ln{\left(x \right)}}{2} - \int{\frac{x}{2} d x}\right)}}$$

Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=\frac{1}{2}$$$ e $$$f{\left(x \right)} = x$$$:

$$x^{2} \ln{\left(x \right)} - 2 {\color{red}{\int{\frac{x}{2} d x}}} = x^{2} \ln{\left(x \right)} - 2 {\color{red}{\left(\frac{\int{x d x}}{2}\right)}}$$

Aplique a regra da potência $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ com $$$n=1$$$:

$$x^{2} \ln{\left(x \right)} - {\color{red}{\int{x d x}}}=x^{2} \ln{\left(x \right)} - {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=x^{2} \ln{\left(x \right)} - {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$

Portanto,

$$\int{2 x \ln{\left(x \right)} d x} = x^{2} \ln{\left(x \right)} - \frac{x^{2}}{2}$$

Simplifique:

$$\int{2 x \ln{\left(x \right)} d x} = x^{2} \left(\ln{\left(x \right)} - \frac{1}{2}\right)$$

Adicione a constante de integração:

$$\int{2 x \ln{\left(x \right)} d x} = x^{2} \left(\ln{\left(x \right)} - \frac{1}{2}\right)+C$$

Resposta

$$$\int x \ln\left(x^{2}\right)\, dx = x^{2} \left(\ln\left(x\right) - \frac{1}{2}\right) + C$$$A


Please try a new game Rotatly