Integral de $$$e^{- \frac{141 p t}{800} + \frac{1673}{500}}$$$ em relação a $$$t$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int e^{- \frac{141 p t}{800} + \frac{1673}{500}}\, dt$$$.
Solução
Seja $$$u=- \frac{141 p t}{800} + \frac{1673}{500}$$$.
Então $$$du=\left(- \frac{141 p t}{800} + \frac{1673}{500}\right)^{\prime }dt = - \frac{141 p}{800} dt$$$ (veja os passos »), e obtemos $$$dt = - \frac{800 du}{141 p}$$$.
A integral pode ser reescrita como
$${\color{red}{\int{e^{- \frac{141 p t}{800} + \frac{1673}{500}} d t}}} = {\color{red}{\int{\left(- \frac{800 e^{u}}{141 p}\right)d u}}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=- \frac{800}{141 p}$$$ e $$$f{\left(u \right)} = e^{u}$$$:
$${\color{red}{\int{\left(- \frac{800 e^{u}}{141 p}\right)d u}}} = {\color{red}{\left(- \frac{800 \int{e^{u} d u}}{141 p}\right)}}$$
A integral da função exponencial é $$$\int{e^{u} d u} = e^{u}$$$:
$$- \frac{800 {\color{red}{\int{e^{u} d u}}}}{141 p} = - \frac{800 {\color{red}{e^{u}}}}{141 p}$$
Recorde que $$$u=- \frac{141 p t}{800} + \frac{1673}{500}$$$:
$$- \frac{800 e^{{\color{red}{u}}}}{141 p} = - \frac{800 e^{{\color{red}{\left(- \frac{141 p t}{800} + \frac{1673}{500}\right)}}}}{141 p}$$
Portanto,
$$\int{e^{- \frac{141 p t}{800} + \frac{1673}{500}} d t} = - \frac{800 e^{- \frac{141 p t}{800} + \frac{1673}{500}}}{141 p}$$
Adicione a constante de integração:
$$\int{e^{- \frac{141 p t}{800} + \frac{1673}{500}} d t} = - \frac{800 e^{- \frac{141 p t}{800} + \frac{1673}{500}}}{141 p}+C$$
Resposta
$$$\int e^{- \frac{141 p t}{800} + \frac{1673}{500}}\, dt = - \frac{800 e^{- \frac{141 p t}{800} + \frac{1673}{500}}}{141 p} + C$$$A