Integral de $$$\cos^{5}{\left(x \right)}$$$

A calculadora encontrará a integral/antiderivada de $$$\cos^{5}{\left(x \right)}$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int \cos^{5}{\left(x \right)}\, dx$$$.

Solução

Separe um cosseno e escreva o restante em termos de seno, usando a fórmula $$$\cos^2\left(\alpha \right)=-\sin^2\left(\alpha \right)+1$$$ com $$$\alpha=x$$$:

$${\color{red}{\int{\cos^{5}{\left(x \right)} d x}}} = {\color{red}{\int{\left(1 - \sin^{2}{\left(x \right)}\right)^{2} \cos{\left(x \right)} d x}}}$$

Seja $$$u=\sin{\left(x \right)}$$$.

Então $$$du=\left(\sin{\left(x \right)}\right)^{\prime }dx = \cos{\left(x \right)} dx$$$ (veja os passos »), e obtemos $$$\cos{\left(x \right)} dx = du$$$.

Logo,

$${\color{red}{\int{\left(1 - \sin^{2}{\left(x \right)}\right)^{2} \cos{\left(x \right)} d x}}} = {\color{red}{\int{\left(1 - u^{2}\right)^{2} d u}}}$$

Expand the expression:

$${\color{red}{\int{\left(1 - u^{2}\right)^{2} d u}}} = {\color{red}{\int{\left(u^{4} - 2 u^{2} + 1\right)d u}}}$$

Integre termo a termo:

$${\color{red}{\int{\left(u^{4} - 2 u^{2} + 1\right)d u}}} = {\color{red}{\left(\int{1 d u} - \int{2 u^{2} d u} + \int{u^{4} d u}\right)}}$$

Aplique a regra da constante $$$\int c\, du = c u$$$ usando $$$c=1$$$:

$$- \int{2 u^{2} d u} + \int{u^{4} d u} + {\color{red}{\int{1 d u}}} = - \int{2 u^{2} d u} + \int{u^{4} d u} + {\color{red}{u}}$$

Aplique a regra da potência $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ com $$$n=4$$$:

$$u - \int{2 u^{2} d u} + {\color{red}{\int{u^{4} d u}}}=u - \int{2 u^{2} d u} + {\color{red}{\frac{u^{1 + 4}}{1 + 4}}}=u - \int{2 u^{2} d u} + {\color{red}{\left(\frac{u^{5}}{5}\right)}}$$

Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=2$$$ e $$$f{\left(u \right)} = u^{2}$$$:

$$\frac{u^{5}}{5} + u - {\color{red}{\int{2 u^{2} d u}}} = \frac{u^{5}}{5} + u - {\color{red}{\left(2 \int{u^{2} d u}\right)}}$$

Aplique a regra da potência $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ com $$$n=2$$$:

$$\frac{u^{5}}{5} + u - 2 {\color{red}{\int{u^{2} d u}}}=\frac{u^{5}}{5} + u - 2 {\color{red}{\frac{u^{1 + 2}}{1 + 2}}}=\frac{u^{5}}{5} + u - 2 {\color{red}{\left(\frac{u^{3}}{3}\right)}}$$

Recorde que $$$u=\sin{\left(x \right)}$$$:

$${\color{red}{u}} - \frac{2 {\color{red}{u}}^{3}}{3} + \frac{{\color{red}{u}}^{5}}{5} = {\color{red}{\sin{\left(x \right)}}} - \frac{2 {\color{red}{\sin{\left(x \right)}}}^{3}}{3} + \frac{{\color{red}{\sin{\left(x \right)}}}^{5}}{5}$$

Portanto,

$$\int{\cos^{5}{\left(x \right)} d x} = \frac{\sin^{5}{\left(x \right)}}{5} - \frac{2 \sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)}$$

Adicione a constante de integração:

$$\int{\cos^{5}{\left(x \right)} d x} = \frac{\sin^{5}{\left(x \right)}}{5} - \frac{2 \sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)}+C$$

Resposta

$$$\int \cos^{5}{\left(x \right)}\, dx = \left(\frac{\sin^{5}{\left(x \right)}}{5} - \frac{2 \sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)}\right) + C$$$A


Please try a new game Rotatly