Integral de $$$\cos^{2}{\left(2 x \right)}$$$
Calculadora relacionada: Calculadora de integrais definidas e impróprias
Sua entrada
Encontre $$$\int \cos^{2}{\left(2 x \right)}\, dx$$$.
Solução
Let $$$u=2 x$$$.
Then $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (steps can be seen here), and we have that $$$dx = \frac{du}{2}$$$.
Therefore,
$$\color{red}{\int{\cos^{2}{\left(2 x \right)} d x}} = \color{red}{\int{\frac{\cos^{2}{\left(u \right)}}{2} d u}}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(u \right)} = \cos^{2}{\left(u \right)}$$$:
$$\color{red}{\int{\frac{\cos^{2}{\left(u \right)}}{2} d u}} = \color{red}{\left(\frac{\int{\cos^{2}{\left(u \right)} d u}}{2}\right)}$$
Rewrite the cosine using the power reducing formula $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$ with $$$\alpha= u $$$:
$$\frac{\color{red}{\int{\cos^{2}{\left(u \right)} d u}}}{2} = \frac{\color{red}{\int{\left(\frac{\cos{\left(2 u \right)}}{2} + \frac{1}{2}\right)d u}}}{2}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(u \right)} = \cos{\left(2 u \right)} + 1$$$:
$$\frac{\color{red}{\int{\left(\frac{\cos{\left(2 u \right)}}{2} + \frac{1}{2}\right)d u}}}{2} = \frac{\color{red}{\left(\frac{\int{\left(\cos{\left(2 u \right)} + 1\right)d u}}{2}\right)}}{2}$$
Integrate term by term:
$$\frac{\color{red}{\int{\left(\cos{\left(2 u \right)} + 1\right)d u}}}{4} = \frac{\color{red}{\left(\int{1 d u} + \int{\cos{\left(2 u \right)} d u}\right)}}{4}$$
Apply the constant rule $$$\int c\, du = c u$$$ with $$$c=1$$$:
$$\frac{\int{\cos{\left(2 u \right)} d u}}{4} + \frac{\color{red}{\int{1 d u}}}{4} = \frac{\int{\cos{\left(2 u \right)} d u}}{4} + \frac{\color{red}{u}}{4}$$
Let $$$v=2 u$$$.
Then $$$dv=\left(2 u\right)^{\prime }du = 2 du$$$ (steps can be seen here), and we have that $$$du = \frac{dv}{2}$$$.
Thus,
$$\frac{u}{4} + \frac{\color{red}{\int{\cos{\left(2 u \right)} d u}}}{4} = \frac{u}{4} + \frac{\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}}{4}$$
Apply the constant multiple rule $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(v \right)} = \cos{\left(v \right)}$$$:
$$\frac{u}{4} + \frac{\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}}{4} = \frac{u}{4} + \frac{\color{red}{\left(\frac{\int{\cos{\left(v \right)} d v}}{2}\right)}}{4}$$
The integral of the cosine is $$$\int{\cos{\left(v \right)} d v} = \sin{\left(v \right)}$$$:
$$\frac{u}{4} + \frac{\color{red}{\int{\cos{\left(v \right)} d v}}}{8} = \frac{u}{4} + \frac{\color{red}{\sin{\left(v \right)}}}{8}$$
Recall that $$$v=2 u$$$:
$$\frac{u}{4} + \frac{\sin{\left(\color{red}{v} \right)}}{8} = \frac{u}{4} + \frac{\sin{\left(\color{red}{\left(2 u\right)} \right)}}{8}$$
Recall that $$$u=2 x$$$:
$$\frac{\sin{\left(2 \color{red}{u} \right)}}{8} + \frac{\color{red}{u}}{4} = \frac{\sin{\left(2 \color{red}{\left(2 x\right)} \right)}}{8} + \frac{\color{red}{\left(2 x\right)}}{4}$$
Therefore,
$$\int{\cos^{2}{\left(2 x \right)} d x} = \frac{x}{2} + \frac{\sin{\left(4 x \right)}}{8}$$
Add the constant of integration:
$$\int{\cos^{2}{\left(2 x \right)} d x} = \frac{x}{2} + \frac{\sin{\left(4 x \right)}}{8}+C$$
Answer: $$$\int{\cos^{2}{\left(2 x \right)} d x}=\frac{x}{2} + \frac{\sin{\left(4 x \right)}}{8}+C$$$