Integral de $$$2 x^{3} - 35 x$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \left(2 x^{3} - 35 x\right)\, dx$$$.
Solução
Integre termo a termo:
$${\color{red}{\int{\left(2 x^{3} - 35 x\right)d x}}} = {\color{red}{\left(- \int{35 x d x} + \int{2 x^{3} d x}\right)}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=35$$$ e $$$f{\left(x \right)} = x$$$:
$$\int{2 x^{3} d x} - {\color{red}{\int{35 x d x}}} = \int{2 x^{3} d x} - {\color{red}{\left(35 \int{x d x}\right)}}$$
Aplique a regra da potência $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ com $$$n=1$$$:
$$\int{2 x^{3} d x} - 35 {\color{red}{\int{x d x}}}=\int{2 x^{3} d x} - 35 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=\int{2 x^{3} d x} - 35 {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=2$$$ e $$$f{\left(x \right)} = x^{3}$$$:
$$- \frac{35 x^{2}}{2} + {\color{red}{\int{2 x^{3} d x}}} = - \frac{35 x^{2}}{2} + {\color{red}{\left(2 \int{x^{3} d x}\right)}}$$
Aplique a regra da potência $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ com $$$n=3$$$:
$$- \frac{35 x^{2}}{2} + 2 {\color{red}{\int{x^{3} d x}}}=- \frac{35 x^{2}}{2} + 2 {\color{red}{\frac{x^{1 + 3}}{1 + 3}}}=- \frac{35 x^{2}}{2} + 2 {\color{red}{\left(\frac{x^{4}}{4}\right)}}$$
Portanto,
$$\int{\left(2 x^{3} - 35 x\right)d x} = \frac{x^{4}}{2} - \frac{35 x^{2}}{2}$$
Simplifique:
$$\int{\left(2 x^{3} - 35 x\right)d x} = \frac{x^{2} \left(x^{2} - 35\right)}{2}$$
Adicione a constante de integração:
$$\int{\left(2 x^{3} - 35 x\right)d x} = \frac{x^{2} \left(x^{2} - 35\right)}{2}+C$$
Resposta
$$$\int \left(2 x^{3} - 35 x\right)\, dx = \frac{x^{2} \left(x^{2} - 35\right)}{2} + C$$$A