Integral de $$$\frac{2 x^{4}}{x^{4} - 1}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \frac{2 x^{4}}{x^{4} - 1}\, dx$$$.
Solução
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=2$$$ e $$$f{\left(x \right)} = \frac{x^{4}}{x^{4} - 1}$$$:
$${\color{red}{\int{\frac{2 x^{4}}{x^{4} - 1} d x}}} = {\color{red}{\left(2 \int{\frac{x^{4}}{x^{4} - 1} d x}\right)}}$$
Reescreva e separe a fração:
$$2 {\color{red}{\int{\frac{x^{4}}{x^{4} - 1} d x}}} = 2 {\color{red}{\int{\left(1 + \frac{1}{x^{4} - 1}\right)d x}}}$$
Integre termo a termo:
$$2 {\color{red}{\int{\left(1 + \frac{1}{x^{4} - 1}\right)d x}}} = 2 {\color{red}{\left(\int{1 d x} + \int{\frac{1}{x^{4} - 1} d x}\right)}}$$
Aplique a regra da constante $$$\int c\, dx = c x$$$ usando $$$c=1$$$:
$$2 \int{\frac{1}{x^{4} - 1} d x} + 2 {\color{red}{\int{1 d x}}} = 2 \int{\frac{1}{x^{4} - 1} d x} + 2 {\color{red}{x}}$$
Efetue a decomposição em frações parciais (os passos podem ser vistos »):
$$2 x + 2 {\color{red}{\int{\frac{1}{x^{4} - 1} d x}}} = 2 x + 2 {\color{red}{\int{\left(- \frac{1}{2 \left(x^{2} + 1\right)} - \frac{1}{4 \left(x + 1\right)} + \frac{1}{4 \left(x - 1\right)}\right)d x}}}$$
Integre termo a termo:
$$2 x + 2 {\color{red}{\int{\left(- \frac{1}{2 \left(x^{2} + 1\right)} - \frac{1}{4 \left(x + 1\right)} + \frac{1}{4 \left(x - 1\right)}\right)d x}}} = 2 x + 2 {\color{red}{\left(\int{\frac{1}{4 \left(x - 1\right)} d x} - \int{\frac{1}{4 \left(x + 1\right)} d x} - \int{\frac{1}{2 \left(x^{2} + 1\right)} d x}\right)}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=\frac{1}{2}$$$ e $$$f{\left(x \right)} = \frac{1}{x^{2} + 1}$$$:
$$2 x + 2 \int{\frac{1}{4 \left(x - 1\right)} d x} - 2 \int{\frac{1}{4 \left(x + 1\right)} d x} - 2 {\color{red}{\int{\frac{1}{2 \left(x^{2} + 1\right)} d x}}} = 2 x + 2 \int{\frac{1}{4 \left(x - 1\right)} d x} - 2 \int{\frac{1}{4 \left(x + 1\right)} d x} - 2 {\color{red}{\left(\frac{\int{\frac{1}{x^{2} + 1} d x}}{2}\right)}}$$
A integral de $$$\frac{1}{x^{2} + 1}$$$ é $$$\int{\frac{1}{x^{2} + 1} d x} = \operatorname{atan}{\left(x \right)}$$$:
$$2 x + 2 \int{\frac{1}{4 \left(x - 1\right)} d x} - 2 \int{\frac{1}{4 \left(x + 1\right)} d x} - {\color{red}{\int{\frac{1}{x^{2} + 1} d x}}} = 2 x + 2 \int{\frac{1}{4 \left(x - 1\right)} d x} - 2 \int{\frac{1}{4 \left(x + 1\right)} d x} - {\color{red}{\operatorname{atan}{\left(x \right)}}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=\frac{1}{4}$$$ e $$$f{\left(x \right)} = \frac{1}{x + 1}$$$:
$$2 x - \operatorname{atan}{\left(x \right)} + 2 \int{\frac{1}{4 \left(x - 1\right)} d x} - 2 {\color{red}{\int{\frac{1}{4 \left(x + 1\right)} d x}}} = 2 x - \operatorname{atan}{\left(x \right)} + 2 \int{\frac{1}{4 \left(x - 1\right)} d x} - 2 {\color{red}{\left(\frac{\int{\frac{1}{x + 1} d x}}{4}\right)}}$$
Seja $$$u=x + 1$$$.
Então $$$du=\left(x + 1\right)^{\prime }dx = 1 dx$$$ (veja os passos »), e obtemos $$$dx = du$$$.
Assim,
$$2 x - \operatorname{atan}{\left(x \right)} + 2 \int{\frac{1}{4 \left(x - 1\right)} d x} - \frac{{\color{red}{\int{\frac{1}{x + 1} d x}}}}{2} = 2 x - \operatorname{atan}{\left(x \right)} + 2 \int{\frac{1}{4 \left(x - 1\right)} d x} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2}$$
A integral de $$$\frac{1}{u}$$$ é $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$2 x - \operatorname{atan}{\left(x \right)} + 2 \int{\frac{1}{4 \left(x - 1\right)} d x} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = 2 x - \operatorname{atan}{\left(x \right)} + 2 \int{\frac{1}{4 \left(x - 1\right)} d x} - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$
Recorde que $$$u=x + 1$$$:
$$2 x - \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} - \operatorname{atan}{\left(x \right)} + 2 \int{\frac{1}{4 \left(x - 1\right)} d x} = 2 x - \frac{\ln{\left(\left|{{\color{red}{\left(x + 1\right)}}}\right| \right)}}{2} - \operatorname{atan}{\left(x \right)} + 2 \int{\frac{1}{4 \left(x - 1\right)} d x}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=\frac{1}{4}$$$ e $$$f{\left(x \right)} = \frac{1}{x - 1}$$$:
$$2 x - \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} - \operatorname{atan}{\left(x \right)} + 2 {\color{red}{\int{\frac{1}{4 \left(x - 1\right)} d x}}} = 2 x - \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} - \operatorname{atan}{\left(x \right)} + 2 {\color{red}{\left(\frac{\int{\frac{1}{x - 1} d x}}{4}\right)}}$$
Seja $$$u=x - 1$$$.
Então $$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (veja os passos »), e obtemos $$$dx = du$$$.
A integral pode ser reescrita como
$$2 x - \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} - \operatorname{atan}{\left(x \right)} + \frac{{\color{red}{\int{\frac{1}{x - 1} d x}}}}{2} = 2 x - \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} - \operatorname{atan}{\left(x \right)} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2}$$
A integral de $$$\frac{1}{u}$$$ é $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$2 x - \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} - \operatorname{atan}{\left(x \right)} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = 2 x - \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} - \operatorname{atan}{\left(x \right)} + \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$
Recorde que $$$u=x - 1$$$:
$$2 x - \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} + \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} - \operatorname{atan}{\left(x \right)} = 2 x - \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} + \frac{\ln{\left(\left|{{\color{red}{\left(x - 1\right)}}}\right| \right)}}{2} - \operatorname{atan}{\left(x \right)}$$
Portanto,
$$\int{\frac{2 x^{4}}{x^{4} - 1} d x} = 2 x + \frac{\ln{\left(\left|{x - 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} - \operatorname{atan}{\left(x \right)}$$
Adicione a constante de integração:
$$\int{\frac{2 x^{4}}{x^{4} - 1} d x} = 2 x + \frac{\ln{\left(\left|{x - 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{x + 1}\right| \right)}}{2} - \operatorname{atan}{\left(x \right)}+C$$
Resposta
$$$\int \frac{2 x^{4}}{x^{4} - 1}\, dx = \left(2 x + \frac{\ln\left(\left|{x - 1}\right|\right)}{2} - \frac{\ln\left(\left|{x + 1}\right|\right)}{2} - \operatorname{atan}{\left(x \right)}\right) + C$$$A