Integral de $$$\frac{1}{\sqrt[3]{x} + x}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \frac{1}{\sqrt[3]{x} + x}\, dx$$$.
Solução
Seja $$$u=\sqrt[3]{x}$$$.
Então $$$du=\left(\sqrt[3]{x}\right)^{\prime }dx = \frac{1}{3 x^{\frac{2}{3}}} dx$$$ (veja os passos »), e obtemos $$$\frac{dx}{x^{\frac{2}{3}}} = 3 du$$$.
A integral torna-se
$${\color{red}{\int{\frac{1}{\sqrt[3]{x} + x} d x}}} = {\color{red}{\int{\frac{3 u}{u^{2} + 1} d u}}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=3$$$ e $$$f{\left(u \right)} = \frac{u}{u^{2} + 1}$$$:
$${\color{red}{\int{\frac{3 u}{u^{2} + 1} d u}}} = {\color{red}{\left(3 \int{\frac{u}{u^{2} + 1} d u}\right)}}$$
Seja $$$v=u^{2} + 1$$$.
Então $$$dv=\left(u^{2} + 1\right)^{\prime }du = 2 u du$$$ (veja os passos »), e obtemos $$$u du = \frac{dv}{2}$$$.
Assim,
$$3 {\color{red}{\int{\frac{u}{u^{2} + 1} d u}}} = 3 {\color{red}{\int{\frac{1}{2 v} d v}}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ usando $$$c=\frac{1}{2}$$$ e $$$f{\left(v \right)} = \frac{1}{v}$$$:
$$3 {\color{red}{\int{\frac{1}{2 v} d v}}} = 3 {\color{red}{\left(\frac{\int{\frac{1}{v} d v}}{2}\right)}}$$
A integral de $$$\frac{1}{v}$$$ é $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:
$$\frac{3 {\color{red}{\int{\frac{1}{v} d v}}}}{2} = \frac{3 {\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{2}$$
Recorde que $$$v=u^{2} + 1$$$:
$$\frac{3 \ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{2} = \frac{3 \ln{\left(\left|{{\color{red}{\left(u^{2} + 1\right)}}}\right| \right)}}{2}$$
Recorde que $$$u=\sqrt[3]{x}$$$:
$$\frac{3 \ln{\left(1 + {\color{red}{u}}^{2} \right)}}{2} = \frac{3 \ln{\left(1 + {\color{red}{\sqrt[3]{x}}}^{2} \right)}}{2}$$
Portanto,
$$\int{\frac{1}{\sqrt[3]{x} + x} d x} = \frac{3 \ln{\left(x^{\frac{2}{3}} + 1 \right)}}{2}$$
Adicione a constante de integração:
$$\int{\frac{1}{\sqrt[3]{x} + x} d x} = \frac{3 \ln{\left(x^{\frac{2}{3}} + 1 \right)}}{2}+C$$
Resposta
$$$\int \frac{1}{\sqrt[3]{x} + x}\, dx = \frac{3 \ln\left(x^{\frac{2}{3}} + 1\right)}{2} + C$$$A