Integral de $$$- \sin^{3}{\left(\theta \right)}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \left(- \sin^{3}{\left(\theta \right)}\right)\, d\theta$$$.
Solução
Aplique a regra do múltiplo constante $$$\int c f{\left(\theta \right)}\, d\theta = c \int f{\left(\theta \right)}\, d\theta$$$ usando $$$c=-1$$$ e $$$f{\left(\theta \right)} = \sin^{3}{\left(\theta \right)}$$$:
$${\color{red}{\int{\left(- \sin^{3}{\left(\theta \right)}\right)d \theta}}} = {\color{red}{\left(- \int{\sin^{3}{\left(\theta \right)} d \theta}\right)}}$$
Separe um fator de seno e escreva todo o restante em termos do cosseno, usando a fórmula $$$\sin^2\left(\alpha \right)=-\cos^2\left(\alpha \right)+1$$$ com $$$\alpha=\theta$$$:
$$- {\color{red}{\int{\sin^{3}{\left(\theta \right)} d \theta}}} = - {\color{red}{\int{\left(1 - \cos^{2}{\left(\theta \right)}\right) \sin{\left(\theta \right)} d \theta}}}$$
Seja $$$u=\cos{\left(\theta \right)}$$$.
Então $$$du=\left(\cos{\left(\theta \right)}\right)^{\prime }d\theta = - \sin{\left(\theta \right)} d\theta$$$ (veja os passos »), e obtemos $$$\sin{\left(\theta \right)} d\theta = - du$$$.
Portanto,
$$- {\color{red}{\int{\left(1 - \cos^{2}{\left(\theta \right)}\right) \sin{\left(\theta \right)} d \theta}}} = - {\color{red}{\int{\left(u^{2} - 1\right)d u}}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=-1$$$ e $$$f{\left(u \right)} = 1 - u^{2}$$$:
$$- {\color{red}{\int{\left(u^{2} - 1\right)d u}}} = - {\color{red}{\left(- \int{\left(1 - u^{2}\right)d u}\right)}}$$
Integre termo a termo:
$${\color{red}{\int{\left(1 - u^{2}\right)d u}}} = {\color{red}{\left(\int{1 d u} - \int{u^{2} d u}\right)}}$$
Aplique a regra da constante $$$\int c\, du = c u$$$ usando $$$c=1$$$:
$$- \int{u^{2} d u} + {\color{red}{\int{1 d u}}} = - \int{u^{2} d u} + {\color{red}{u}}$$
Aplique a regra da potência $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ com $$$n=2$$$:
$$u - {\color{red}{\int{u^{2} d u}}}=u - {\color{red}{\frac{u^{1 + 2}}{1 + 2}}}=u - {\color{red}{\left(\frac{u^{3}}{3}\right)}}$$
Recorde que $$$u=\cos{\left(\theta \right)}$$$:
$${\color{red}{u}} - \frac{{\color{red}{u}}^{3}}{3} = {\color{red}{\cos{\left(\theta \right)}}} - \frac{{\color{red}{\cos{\left(\theta \right)}}}^{3}}{3}$$
Portanto,
$$\int{\left(- \sin^{3}{\left(\theta \right)}\right)d \theta} = - \frac{\cos^{3}{\left(\theta \right)}}{3} + \cos{\left(\theta \right)}$$
Adicione a constante de integração:
$$\int{\left(- \sin^{3}{\left(\theta \right)}\right)d \theta} = - \frac{\cos^{3}{\left(\theta \right)}}{3} + \cos{\left(\theta \right)}+C$$
Resposta
$$$\int \left(- \sin^{3}{\left(\theta \right)}\right)\, d\theta = \left(- \frac{\cos^{3}{\left(\theta \right)}}{3} + \cos{\left(\theta \right)}\right) + C$$$A