Integral de $$$- \sin{\left(1 \right)}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \left(- \sin{\left(1 \right)}\right)\, dx$$$.
Solução
Aplique a regra da constante $$$\int c\, dx = c x$$$ usando $$$c=- \sin{\left(1 \right)}$$$:
$${\color{red}{\int{\left(- \sin{\left(1 \right)}\right)d x}}} = {\color{red}{\left(- x \sin{\left(1 \right)}\right)}}$$
Portanto,
$$\int{\left(- \sin{\left(1 \right)}\right)d x} = - x \sin{\left(1 \right)}$$
Adicione a constante de integração:
$$\int{\left(- \sin{\left(1 \right)}\right)d x} = - x \sin{\left(1 \right)}+C$$
Resposta
$$$\int \left(- \sin{\left(1 \right)}\right)\, dx = - x \sin{\left(1 \right)} + C$$$A