Integral de $$$- 5^{u}$$$

A calculadora encontrará a integral/antiderivada de $$$- 5^{u}$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int \left(- 5^{u}\right)\, du$$$.

Solução

Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=-1$$$ e $$$f{\left(u \right)} = 5^{u}$$$:

$${\color{red}{\int{\left(- 5^{u}\right)d u}}} = {\color{red}{\left(- \int{5^{u} d u}\right)}}$$

Apply the exponential rule $$$\int{a^{u} d u} = \frac{a^{u}}{\ln{\left(a \right)}}$$$ with $$$a=5$$$:

$$- {\color{red}{\int{5^{u} d u}}} = - {\color{red}{\frac{5^{u}}{\ln{\left(5 \right)}}}}$$

Portanto,

$$\int{\left(- 5^{u}\right)d u} = - \frac{5^{u}}{\ln{\left(5 \right)}}$$

Adicione a constante de integração:

$$\int{\left(- 5^{u}\right)d u} = - \frac{5^{u}}{\ln{\left(5 \right)}}+C$$

Resposta

$$$\int \left(- 5^{u}\right)\, du = - \frac{5^{u}}{\ln\left(5\right)} + C$$$A


Please try a new game Rotatly