Integral de $$$- 10 \sin{\left(x \right)}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \left(- 10 \sin{\left(x \right)}\right)\, dx$$$.
Solução
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=-10$$$ e $$$f{\left(x \right)} = \sin{\left(x \right)}$$$:
$${\color{red}{\int{\left(- 10 \sin{\left(x \right)}\right)d x}}} = {\color{red}{\left(- 10 \int{\sin{\left(x \right)} d x}\right)}}$$
A integral do seno é $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:
$$- 10 {\color{red}{\int{\sin{\left(x \right)} d x}}} = - 10 {\color{red}{\left(- \cos{\left(x \right)}\right)}}$$
Portanto,
$$\int{\left(- 10 \sin{\left(x \right)}\right)d x} = 10 \cos{\left(x \right)}$$
Adicione a constante de integração:
$$\int{\left(- 10 \sin{\left(x \right)}\right)d x} = 10 \cos{\left(x \right)}+C$$
Resposta
$$$\int \left(- 10 \sin{\left(x \right)}\right)\, dx = 10 \cos{\left(x \right)} + C$$$A