Integral de $$$\sqrt{x} \ln\left(x\right)$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \sqrt{x} \ln\left(x\right)\, dx$$$.
Solução
Para a integral $$$\int{\sqrt{x} \ln{\left(x \right)} d x}$$$, use integração por partes $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Sejam $$$\operatorname{u}=\ln{\left(x \right)}$$$ e $$$\operatorname{dv}=\sqrt{x} dx$$$.
Então $$$\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$ (os passos podem ser vistos ») e $$$\operatorname{v}=\int{\sqrt{x} d x}=\frac{2 x^{\frac{3}{2}}}{3}$$$ (os passos podem ser vistos »).
A integral torna-se
$${\color{red}{\int{\sqrt{x} \ln{\left(x \right)} d x}}}={\color{red}{\left(\ln{\left(x \right)} \cdot \frac{2 x^{\frac{3}{2}}}{3}-\int{\frac{2 x^{\frac{3}{2}}}{3} \cdot \frac{1}{x} d x}\right)}}={\color{red}{\left(\frac{2 x^{\frac{3}{2}} \ln{\left(x \right)}}{3} - \int{\frac{2 \sqrt{x}}{3} d x}\right)}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=\frac{2}{3}$$$ e $$$f{\left(x \right)} = \sqrt{x}$$$:
$$\frac{2 x^{\frac{3}{2}} \ln{\left(x \right)}}{3} - {\color{red}{\int{\frac{2 \sqrt{x}}{3} d x}}} = \frac{2 x^{\frac{3}{2}} \ln{\left(x \right)}}{3} - {\color{red}{\left(\frac{2 \int{\sqrt{x} d x}}{3}\right)}}$$
Aplique a regra da potência $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ com $$$n=\frac{1}{2}$$$:
$$\frac{2 x^{\frac{3}{2}} \ln{\left(x \right)}}{3} - \frac{2 {\color{red}{\int{\sqrt{x} d x}}}}{3}=\frac{2 x^{\frac{3}{2}} \ln{\left(x \right)}}{3} - \frac{2 {\color{red}{\int{x^{\frac{1}{2}} d x}}}}{3}=\frac{2 x^{\frac{3}{2}} \ln{\left(x \right)}}{3} - \frac{2 {\color{red}{\frac{x^{\frac{1}{2} + 1}}{\frac{1}{2} + 1}}}}{3}=\frac{2 x^{\frac{3}{2}} \ln{\left(x \right)}}{3} - \frac{2 {\color{red}{\left(\frac{2 x^{\frac{3}{2}}}{3}\right)}}}{3}$$
Portanto,
$$\int{\sqrt{x} \ln{\left(x \right)} d x} = \frac{2 x^{\frac{3}{2}} \ln{\left(x \right)}}{3} - \frac{4 x^{\frac{3}{2}}}{9}$$
Simplifique:
$$\int{\sqrt{x} \ln{\left(x \right)} d x} = \frac{2 x^{\frac{3}{2}} \left(3 \ln{\left(x \right)} - 2\right)}{9}$$
Adicione a constante de integração:
$$\int{\sqrt{x} \ln{\left(x \right)} d x} = \frac{2 x^{\frac{3}{2}} \left(3 \ln{\left(x \right)} - 2\right)}{9}+C$$
Resposta
$$$\int \sqrt{x} \ln\left(x\right)\, dx = \frac{2 x^{\frac{3}{2}} \left(3 \ln\left(x\right) - 2\right)}{9} + C$$$A