Integral de $$$y^{\frac{7}{2}} \left(4 x^{3} y - 2 x y^{2}\right)$$$ em relação a $$$x$$$

A calculadora encontrará a integral/primitiva de $$$y^{\frac{7}{2}} \left(4 x^{3} y - 2 x y^{2}\right)$$$ em relação a $$$x$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int y^{\frac{7}{2}} \left(4 x^{3} y - 2 x y^{2}\right)\, dx$$$.

Solução

Simplifique o integrando:

$${\color{red}{\int{y^{\frac{7}{2}} \left(4 x^{3} y - 2 x y^{2}\right) d x}}} = {\color{red}{\int{2 x y^{\frac{9}{2}} \left(2 x^{2} - y\right) d x}}}$$

Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=2 y^{\frac{9}{2}}$$$ e $$$f{\left(x \right)} = x \left(2 x^{2} - y\right)$$$:

$${\color{red}{\int{2 x y^{\frac{9}{2}} \left(2 x^{2} - y\right) d x}}} = {\color{red}{\left(2 y^{\frac{9}{2}} \int{x \left(2 x^{2} - y\right) d x}\right)}}$$

Seja $$$u=2 x^{2} - y$$$.

Então $$$du=\left(2 x^{2} - y\right)^{\prime }dx = 4 x dx$$$ (veja os passos »), e obtemos $$$x dx = \frac{du}{4}$$$.

Logo,

$$2 y^{\frac{9}{2}} {\color{red}{\int{x \left(2 x^{2} - y\right) d x}}} = 2 y^{\frac{9}{2}} {\color{red}{\int{\frac{u}{4} d u}}}$$

Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=\frac{1}{4}$$$ e $$$f{\left(u \right)} = u$$$:

$$2 y^{\frac{9}{2}} {\color{red}{\int{\frac{u}{4} d u}}} = 2 y^{\frac{9}{2}} {\color{red}{\left(\frac{\int{u d u}}{4}\right)}}$$

Aplique a regra da potência $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ com $$$n=1$$$:

$$\frac{y^{\frac{9}{2}} {\color{red}{\int{u d u}}}}{2}=\frac{y^{\frac{9}{2}} {\color{red}{\frac{u^{1 + 1}}{1 + 1}}}}{2}=\frac{y^{\frac{9}{2}} {\color{red}{\left(\frac{u^{2}}{2}\right)}}}{2}$$

Recorde que $$$u=2 x^{2} - y$$$:

$$\frac{y^{\frac{9}{2}} {\color{red}{u}}^{2}}{4} = \frac{y^{\frac{9}{2}} {\color{red}{\left(2 x^{2} - y\right)}}^{2}}{4}$$

Portanto,

$$\int{y^{\frac{7}{2}} \left(4 x^{3} y - 2 x y^{2}\right) d x} = \frac{y^{\frac{9}{2}} \left(2 x^{2} - y\right)^{2}}{4}$$

Simplifique:

$$\int{y^{\frac{7}{2}} \left(4 x^{3} y - 2 x y^{2}\right) d x} = \frac{y^{\frac{9}{2}} \left(- 2 x^{2} + y\right)^{2}}{4}$$

Adicione a constante de integração:

$$\int{y^{\frac{7}{2}} \left(4 x^{3} y - 2 x y^{2}\right) d x} = \frac{y^{\frac{9}{2}} \left(- 2 x^{2} + y\right)^{2}}{4}+C$$

Resposta

$$$\int y^{\frac{7}{2}} \left(4 x^{3} y - 2 x y^{2}\right)\, dx = \frac{y^{\frac{9}{2}} \left(- 2 x^{2} + y\right)^{2}}{4} + C$$$A


Please try a new game Rotatly