Integral de $$$x \sec^{2}{\left(x \right)}$$$

A calculadora encontrará a integral/antiderivada de $$$x \sec^{2}{\left(x \right)}$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int x \sec^{2}{\left(x \right)}\, dx$$$.

Solução

Para a integral $$$\int{x \sec^{2}{\left(x \right)} d x}$$$, use integração por partes $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Sejam $$$\operatorname{u}=x$$$ e $$$\operatorname{dv}=\sec^{2}{\left(x \right)} dx$$$.

Então $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (os passos podem ser vistos ») e $$$\operatorname{v}=\int{\sec^{2}{\left(x \right)} d x}=\tan{\left(x \right)}$$$ (os passos podem ser vistos »).

A integral torna-se

$${\color{red}{\int{x \sec^{2}{\left(x \right)} d x}}}={\color{red}{\left(x \cdot \tan{\left(x \right)}-\int{\tan{\left(x \right)} \cdot 1 d x}\right)}}={\color{red}{\left(x \tan{\left(x \right)} - \int{\tan{\left(x \right)} d x}\right)}}$$

Reescreva a reta tangente como $$$\tan\left(x\right)=\frac{\sin\left(x\right)}{\cos\left(x\right)}$$$:

$$x \tan{\left(x \right)} - {\color{red}{\int{\tan{\left(x \right)} d x}}} = x \tan{\left(x \right)} - {\color{red}{\int{\frac{\sin{\left(x \right)}}{\cos{\left(x \right)}} d x}}}$$

Seja $$$u=\cos{\left(x \right)}$$$.

Então $$$du=\left(\cos{\left(x \right)}\right)^{\prime }dx = - \sin{\left(x \right)} dx$$$ (veja os passos »), e obtemos $$$\sin{\left(x \right)} dx = - du$$$.

A integral pode ser reescrita como

$$x \tan{\left(x \right)} - {\color{red}{\int{\frac{\sin{\left(x \right)}}{\cos{\left(x \right)}} d x}}} = x \tan{\left(x \right)} - {\color{red}{\int{\left(- \frac{1}{u}\right)d u}}}$$

Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=-1$$$ e $$$f{\left(u \right)} = \frac{1}{u}$$$:

$$x \tan{\left(x \right)} - {\color{red}{\int{\left(- \frac{1}{u}\right)d u}}} = x \tan{\left(x \right)} - {\color{red}{\left(- \int{\frac{1}{u} d u}\right)}}$$

A integral de $$$\frac{1}{u}$$$ é $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$x \tan{\left(x \right)} + {\color{red}{\int{\frac{1}{u} d u}}} = x \tan{\left(x \right)} + {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

Recorde que $$$u=\cos{\left(x \right)}$$$:

$$x \tan{\left(x \right)} + \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = x \tan{\left(x \right)} + \ln{\left(\left|{{\color{red}{\cos{\left(x \right)}}}}\right| \right)}$$

Portanto,

$$\int{x \sec^{2}{\left(x \right)} d x} = x \tan{\left(x \right)} + \ln{\left(\left|{\cos{\left(x \right)}}\right| \right)}$$

Adicione a constante de integração:

$$\int{x \sec^{2}{\left(x \right)} d x} = x \tan{\left(x \right)} + \ln{\left(\left|{\cos{\left(x \right)}}\right| \right)}+C$$

Resposta

$$$\int x \sec^{2}{\left(x \right)}\, dx = \left(x \tan{\left(x \right)} + \ln\left(\left|{\cos{\left(x \right)}}\right|\right)\right) + C$$$A


Please try a new game Rotatly