Integral de $$$- x + \sqrt{2} x$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \left(- x + \sqrt{2} x\right)\, dx$$$.
Solução
Integre termo a termo:
$${\color{red}{\int{\left(- x + \sqrt{2} x\right)d x}}} = {\color{red}{\left(- \int{x d x} + \int{\sqrt{2} x d x}\right)}}$$
Aplique a regra da potência $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ com $$$n=1$$$:
$$\int{\sqrt{2} x d x} - {\color{red}{\int{x d x}}}=\int{\sqrt{2} x d x} - {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=\int{\sqrt{2} x d x} - {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=\sqrt{2}$$$ e $$$f{\left(x \right)} = x$$$:
$$- \frac{x^{2}}{2} + {\color{red}{\int{\sqrt{2} x d x}}} = - \frac{x^{2}}{2} + {\color{red}{\sqrt{2} \int{x d x}}}$$
Aplique a regra da potência $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ com $$$n=1$$$:
$$- \frac{x^{2}}{2} + \sqrt{2} {\color{red}{\int{x d x}}}=- \frac{x^{2}}{2} + \sqrt{2} {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=- \frac{x^{2}}{2} + \sqrt{2} {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
Portanto,
$$\int{\left(- x + \sqrt{2} x\right)d x} = - \frac{x^{2}}{2} + \frac{\sqrt{2} x^{2}}{2}$$
Simplifique:
$$\int{\left(- x + \sqrt{2} x\right)d x} = \frac{x^{2} \left(-1 + \sqrt{2}\right)}{2}$$
Adicione a constante de integração:
$$\int{\left(- x + \sqrt{2} x\right)d x} = \frac{x^{2} \left(-1 + \sqrt{2}\right)}{2}+C$$
Resposta
$$$\int \left(- x + \sqrt{2} x\right)\, dx = \frac{x^{2} \left(-1 + \sqrt{2}\right)}{2} + C$$$A