Integral de $$$3 x^{6} y^{3}$$$ em relação a $$$x$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int 3 x^{6} y^{3}\, dx$$$.
Solução
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=3 y^{3}$$$ e $$$f{\left(x \right)} = x^{6}$$$:
$${\color{red}{\int{3 x^{6} y^{3} d x}}} = {\color{red}{\left(3 y^{3} \int{x^{6} d x}\right)}}$$
Aplique a regra da potência $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ com $$$n=6$$$:
$$3 y^{3} {\color{red}{\int{x^{6} d x}}}=3 y^{3} {\color{red}{\frac{x^{1 + 6}}{1 + 6}}}=3 y^{3} {\color{red}{\left(\frac{x^{7}}{7}\right)}}$$
Portanto,
$$\int{3 x^{6} y^{3} d x} = \frac{3 x^{7} y^{3}}{7}$$
Adicione a constante de integração:
$$\int{3 x^{6} y^{3} d x} = \frac{3 x^{7} y^{3}}{7}+C$$
Resposta
$$$\int 3 x^{6} y^{3}\, dx = \frac{3 x^{7} y^{3}}{7} + C$$$A