Integral de $$$x^{n} \left(1 - x\right)$$$ em relação a $$$x$$$

A calculadora encontrará a integral/primitiva de $$$x^{n} \left(1 - x\right)$$$ em relação a $$$x$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int x^{n} \left(1 - x\right)\, dx$$$.

Solução

Esta integral não possui forma fechada:

$${\color{red}{\int{x^{n} \left(1 - x\right) d x}}} = {\color{red}{\frac{x^{n + 1} {{}_{2}F_{1}\left(\begin{matrix} -1, n + 1 \\ n + 2 \end{matrix}\middle| {x} \right)}}{n + 1}}}$$

Portanto,

$$\int{x^{n} \left(1 - x\right) d x} = \frac{x^{n + 1} {{}_{2}F_{1}\left(\begin{matrix} -1, n + 1 \\ n + 2 \end{matrix}\middle| {x} \right)}}{n + 1}$$

Simplifique:

$$\int{x^{n} \left(1 - x\right) d x} = \frac{x^{n + 1} \left(n - x \left(n + 1\right) + 2\right)}{\left(n + 1\right) \left(n + 2\right)}$$

Adicione a constante de integração:

$$\int{x^{n} \left(1 - x\right) d x} = \frac{x^{n + 1} \left(n - x \left(n + 1\right) + 2\right)}{\left(n + 1\right) \left(n + 2\right)}+C$$

Resposta

$$$\int x^{n} \left(1 - x\right)\, dx = \frac{x^{n + 1} \left(n - x \left(n + 1\right) + 2\right)}{\left(n + 1\right) \left(n + 2\right)} + C$$$A


Please try a new game Rotatly