Integral de $$$x^{3} \sin{\left(x \right)}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int x^{3} \sin{\left(x \right)}\, dx$$$.
Solução
Para a integral $$$\int{x^{3} \sin{\left(x \right)} d x}$$$, use integração por partes $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Sejam $$$\operatorname{u}=x^{3}$$$ e $$$\operatorname{dv}=\sin{\left(x \right)} dx$$$.
Então $$$\operatorname{du}=\left(x^{3}\right)^{\prime }dx=3 x^{2} dx$$$ (os passos podem ser vistos ») e $$$\operatorname{v}=\int{\sin{\left(x \right)} d x}=- \cos{\left(x \right)}$$$ (os passos podem ser vistos »).
A integral torna-se
$${\color{red}{\int{x^{3} \sin{\left(x \right)} d x}}}={\color{red}{\left(x^{3} \cdot \left(- \cos{\left(x \right)}\right)-\int{\left(- \cos{\left(x \right)}\right) \cdot 3 x^{2} d x}\right)}}={\color{red}{\left(- x^{3} \cos{\left(x \right)} - \int{\left(- 3 x^{2} \cos{\left(x \right)}\right)d x}\right)}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=-3$$$ e $$$f{\left(x \right)} = x^{2} \cos{\left(x \right)}$$$:
$$- x^{3} \cos{\left(x \right)} - {\color{red}{\int{\left(- 3 x^{2} \cos{\left(x \right)}\right)d x}}} = - x^{3} \cos{\left(x \right)} - {\color{red}{\left(- 3 \int{x^{2} \cos{\left(x \right)} d x}\right)}}$$
Para a integral $$$\int{x^{2} \cos{\left(x \right)} d x}$$$, use integração por partes $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Sejam $$$\operatorname{u}=x^{2}$$$ e $$$\operatorname{dv}=\cos{\left(x \right)} dx$$$.
Então $$$\operatorname{du}=\left(x^{2}\right)^{\prime }dx=2 x dx$$$ (os passos podem ser vistos ») e $$$\operatorname{v}=\int{\cos{\left(x \right)} d x}=\sin{\left(x \right)}$$$ (os passos podem ser vistos »).
Assim,
$$- x^{3} \cos{\left(x \right)} + 3 {\color{red}{\int{x^{2} \cos{\left(x \right)} d x}}}=- x^{3} \cos{\left(x \right)} + 3 {\color{red}{\left(x^{2} \cdot \sin{\left(x \right)}-\int{\sin{\left(x \right)} \cdot 2 x d x}\right)}}=- x^{3} \cos{\left(x \right)} + 3 {\color{red}{\left(x^{2} \sin{\left(x \right)} - \int{2 x \sin{\left(x \right)} d x}\right)}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=2$$$ e $$$f{\left(x \right)} = x \sin{\left(x \right)}$$$:
$$- x^{3} \cos{\left(x \right)} + 3 x^{2} \sin{\left(x \right)} - 3 {\color{red}{\int{2 x \sin{\left(x \right)} d x}}} = - x^{3} \cos{\left(x \right)} + 3 x^{2} \sin{\left(x \right)} - 3 {\color{red}{\left(2 \int{x \sin{\left(x \right)} d x}\right)}}$$
Para a integral $$$\int{x \sin{\left(x \right)} d x}$$$, use integração por partes $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Sejam $$$\operatorname{u}=x$$$ e $$$\operatorname{dv}=\sin{\left(x \right)} dx$$$.
Então $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (os passos podem ser vistos ») e $$$\operatorname{v}=\int{\sin{\left(x \right)} d x}=- \cos{\left(x \right)}$$$ (os passos podem ser vistos »).
Portanto,
$$- x^{3} \cos{\left(x \right)} + 3 x^{2} \sin{\left(x \right)} - 6 {\color{red}{\int{x \sin{\left(x \right)} d x}}}=- x^{3} \cos{\left(x \right)} + 3 x^{2} \sin{\left(x \right)} - 6 {\color{red}{\left(x \cdot \left(- \cos{\left(x \right)}\right)-\int{\left(- \cos{\left(x \right)}\right) \cdot 1 d x}\right)}}=- x^{3} \cos{\left(x \right)} + 3 x^{2} \sin{\left(x \right)} - 6 {\color{red}{\left(- x \cos{\left(x \right)} - \int{\left(- \cos{\left(x \right)}\right)d x}\right)}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=-1$$$ e $$$f{\left(x \right)} = \cos{\left(x \right)}$$$:
$$- x^{3} \cos{\left(x \right)} + 3 x^{2} \sin{\left(x \right)} + 6 x \cos{\left(x \right)} + 6 {\color{red}{\int{\left(- \cos{\left(x \right)}\right)d x}}} = - x^{3} \cos{\left(x \right)} + 3 x^{2} \sin{\left(x \right)} + 6 x \cos{\left(x \right)} + 6 {\color{red}{\left(- \int{\cos{\left(x \right)} d x}\right)}}$$
A integral do cosseno é $$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$:
$$- x^{3} \cos{\left(x \right)} + 3 x^{2} \sin{\left(x \right)} + 6 x \cos{\left(x \right)} - 6 {\color{red}{\int{\cos{\left(x \right)} d x}}} = - x^{3} \cos{\left(x \right)} + 3 x^{2} \sin{\left(x \right)} + 6 x \cos{\left(x \right)} - 6 {\color{red}{\sin{\left(x \right)}}}$$
Portanto,
$$\int{x^{3} \sin{\left(x \right)} d x} = - x^{3} \cos{\left(x \right)} + 3 x^{2} \sin{\left(x \right)} + 6 x \cos{\left(x \right)} - 6 \sin{\left(x \right)}$$
Adicione a constante de integração:
$$\int{x^{3} \sin{\left(x \right)} d x} = - x^{3} \cos{\left(x \right)} + 3 x^{2} \sin{\left(x \right)} + 6 x \cos{\left(x \right)} - 6 \sin{\left(x \right)}+C$$
Resposta
$$$\int x^{3} \sin{\left(x \right)}\, dx = \left(- x^{3} \cos{\left(x \right)} + 3 x^{2} \sin{\left(x \right)} + 6 x \cos{\left(x \right)} - 6 \sin{\left(x \right)}\right) + C$$$A