Integral de $$$- 2 x^{2} + x$$$

A calculadora encontrará a integral/antiderivada de $$$- 2 x^{2} + x$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int \left(- 2 x^{2} + x\right)\, dx$$$.

Solução

Integre termo a termo:

$${\color{red}{\int{\left(- 2 x^{2} + x\right)d x}}} = {\color{red}{\left(\int{x d x} - \int{2 x^{2} d x}\right)}}$$

Aplique a regra da potência $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ com $$$n=1$$$:

$$- \int{2 x^{2} d x} + {\color{red}{\int{x d x}}}=- \int{2 x^{2} d x} + {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=- \int{2 x^{2} d x} + {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$

Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=2$$$ e $$$f{\left(x \right)} = x^{2}$$$:

$$\frac{x^{2}}{2} - {\color{red}{\int{2 x^{2} d x}}} = \frac{x^{2}}{2} - {\color{red}{\left(2 \int{x^{2} d x}\right)}}$$

Aplique a regra da potência $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ com $$$n=2$$$:

$$\frac{x^{2}}{2} - 2 {\color{red}{\int{x^{2} d x}}}=\frac{x^{2}}{2} - 2 {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=\frac{x^{2}}{2} - 2 {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$

Portanto,

$$\int{\left(- 2 x^{2} + x\right)d x} = - \frac{2 x^{3}}{3} + \frac{x^{2}}{2}$$

Simplifique:

$$\int{\left(- 2 x^{2} + x\right)d x} = \frac{x^{2} \left(3 - 4 x\right)}{6}$$

Adicione a constante de integração:

$$\int{\left(- 2 x^{2} + x\right)d x} = \frac{x^{2} \left(3 - 4 x\right)}{6}+C$$

Resposta

$$$\int \left(- 2 x^{2} + x\right)\, dx = \frac{x^{2} \left(3 - 4 x\right)}{6} + C$$$A


Please try a new game Rotatly