Integral de $$$\frac{x \cos{\left(x \right)}}{2}$$$

A calculadora encontrará a integral/antiderivada de $$$\frac{x \cos{\left(x \right)}}{2}$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int \frac{x \cos{\left(x \right)}}{2}\, dx$$$.

Solução

Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=\frac{1}{2}$$$ e $$$f{\left(x \right)} = x \cos{\left(x \right)}$$$:

$${\color{red}{\int{\frac{x \cos{\left(x \right)}}{2} d x}}} = {\color{red}{\left(\frac{\int{x \cos{\left(x \right)} d x}}{2}\right)}}$$

Para a integral $$$\int{x \cos{\left(x \right)} d x}$$$, use integração por partes $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Sejam $$$\operatorname{u}=x$$$ e $$$\operatorname{dv}=\cos{\left(x \right)} dx$$$.

Então $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (os passos podem ser vistos ») e $$$\operatorname{v}=\int{\cos{\left(x \right)} d x}=\sin{\left(x \right)}$$$ (os passos podem ser vistos »).

A integral torna-se

$$\frac{{\color{red}{\int{x \cos{\left(x \right)} d x}}}}{2}=\frac{{\color{red}{\left(x \cdot \sin{\left(x \right)}-\int{\sin{\left(x \right)} \cdot 1 d x}\right)}}}{2}=\frac{{\color{red}{\left(x \sin{\left(x \right)} - \int{\sin{\left(x \right)} d x}\right)}}}{2}$$

A integral do seno é $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:

$$\frac{x \sin{\left(x \right)}}{2} - \frac{{\color{red}{\int{\sin{\left(x \right)} d x}}}}{2} = \frac{x \sin{\left(x \right)}}{2} - \frac{{\color{red}{\left(- \cos{\left(x \right)}\right)}}}{2}$$

Portanto,

$$\int{\frac{x \cos{\left(x \right)}}{2} d x} = \frac{x \sin{\left(x \right)}}{2} + \frac{\cos{\left(x \right)}}{2}$$

Simplifique:

$$\int{\frac{x \cos{\left(x \right)}}{2} d x} = \frac{x \sin{\left(x \right)} + \cos{\left(x \right)}}{2}$$

Adicione a constante de integração:

$$\int{\frac{x \cos{\left(x \right)}}{2} d x} = \frac{x \sin{\left(x \right)} + \cos{\left(x \right)}}{2}+C$$

Resposta

$$$\int \frac{x \cos{\left(x \right)}}{2}\, dx = \frac{x \sin{\left(x \right)} + \cos{\left(x \right)}}{2} + C$$$A


Please try a new game Rotatly