Integral de $$$w - \frac{3}{2}$$$

A calculadora encontrará a integral/antiderivada de $$$w - \frac{3}{2}$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int \left(w - \frac{3}{2}\right)\, dw$$$.

Solução

Integre termo a termo:

$${\color{red}{\int{\left(w - \frac{3}{2}\right)d w}}} = {\color{red}{\left(- \int{\frac{3}{2} d w} + \int{w d w}\right)}}$$

Aplique a regra da constante $$$\int c\, dw = c w$$$ usando $$$c=\frac{3}{2}$$$:

$$\int{w d w} - {\color{red}{\int{\frac{3}{2} d w}}} = \int{w d w} - {\color{red}{\left(\frac{3 w}{2}\right)}}$$

Aplique a regra da potência $$$\int w^{n}\, dw = \frac{w^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ com $$$n=1$$$:

$$- \frac{3 w}{2} + {\color{red}{\int{w d w}}}=- \frac{3 w}{2} + {\color{red}{\frac{w^{1 + 1}}{1 + 1}}}=- \frac{3 w}{2} + {\color{red}{\left(\frac{w^{2}}{2}\right)}}$$

Portanto,

$$\int{\left(w - \frac{3}{2}\right)d w} = \frac{w^{2}}{2} - \frac{3 w}{2}$$

Simplifique:

$$\int{\left(w - \frac{3}{2}\right)d w} = \frac{w \left(w - 3\right)}{2}$$

Adicione a constante de integração:

$$\int{\left(w - \frac{3}{2}\right)d w} = \frac{w \left(w - 3\right)}{2}+C$$

Resposta

$$$\int \left(w - \frac{3}{2}\right)\, dw = \frac{w \left(w - 3\right)}{2} + C$$$A


Please try a new game Rotatly