Integral de $$$\sqrt{x y}$$$ em relação a $$$x$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \sqrt{x y}\, dx$$$.
Solução
A entrada é reescrita como: $$$\int{\sqrt{x y} d x}=\int{\sqrt{x} \sqrt{y} d x}$$$.
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=\sqrt{y}$$$ e $$$f{\left(x \right)} = \sqrt{x}$$$:
$${\color{red}{\int{\sqrt{x} \sqrt{y} d x}}} = {\color{red}{\sqrt{y} \int{\sqrt{x} d x}}}$$
Aplique a regra da potência $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ com $$$n=\frac{1}{2}$$$:
$$\sqrt{y} {\color{red}{\int{\sqrt{x} d x}}}=\sqrt{y} {\color{red}{\int{x^{\frac{1}{2}} d x}}}=\sqrt{y} {\color{red}{\frac{x^{\frac{1}{2} + 1}}{\frac{1}{2} + 1}}}=\sqrt{y} {\color{red}{\left(\frac{2 x^{\frac{3}{2}}}{3}\right)}}$$
Portanto,
$$\int{\sqrt{x} \sqrt{y} d x} = \frac{2 x^{\frac{3}{2}} \sqrt{y}}{3}$$
Adicione a constante de integração:
$$\int{\sqrt{x} \sqrt{y} d x} = \frac{2 x^{\frac{3}{2}} \sqrt{y}}{3}+C$$
Resposta
$$$\int \sqrt{x y}\, dx = \frac{2 x^{\frac{3}{2}} \sqrt{y}}{3} + C$$$A