Integral de $$$\frac{\sin{\left(x \right)}}{3 \cos{\left(x \right)}}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \frac{\sin{\left(x \right)}}{3 \cos{\left(x \right)}}\, dx$$$.
Solução
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=\frac{1}{3}$$$ e $$$f{\left(x \right)} = \frac{\sin{\left(x \right)}}{\cos{\left(x \right)}}$$$:
$${\color{red}{\int{\frac{\sin{\left(x \right)}}{3 \cos{\left(x \right)}} d x}}} = {\color{red}{\left(\frac{\int{\frac{\sin{\left(x \right)}}{\cos{\left(x \right)}} d x}}{3}\right)}}$$
Seja $$$u=\cos{\left(x \right)}$$$.
Então $$$du=\left(\cos{\left(x \right)}\right)^{\prime }dx = - \sin{\left(x \right)} dx$$$ (veja os passos »), e obtemos $$$\sin{\left(x \right)} dx = - du$$$.
Assim,
$$\frac{{\color{red}{\int{\frac{\sin{\left(x \right)}}{\cos{\left(x \right)}} d x}}}}{3} = \frac{{\color{red}{\int{\left(- \frac{1}{u}\right)d u}}}}{3}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=-1$$$ e $$$f{\left(u \right)} = \frac{1}{u}$$$:
$$\frac{{\color{red}{\int{\left(- \frac{1}{u}\right)d u}}}}{3} = \frac{{\color{red}{\left(- \int{\frac{1}{u} d u}\right)}}}{3}$$
A integral de $$$\frac{1}{u}$$$ é $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{3} = - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{3}$$
Recorde que $$$u=\cos{\left(x \right)}$$$:
$$- \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{3} = - \frac{\ln{\left(\left|{{\color{red}{\cos{\left(x \right)}}}}\right| \right)}}{3}$$
Portanto,
$$\int{\frac{\sin{\left(x \right)}}{3 \cos{\left(x \right)}} d x} = - \frac{\ln{\left(\left|{\cos{\left(x \right)}}\right| \right)}}{3}$$
Adicione a constante de integração:
$$\int{\frac{\sin{\left(x \right)}}{3 \cos{\left(x \right)}} d x} = - \frac{\ln{\left(\left|{\cos{\left(x \right)}}\right| \right)}}{3}+C$$
Resposta
$$$\int \frac{\sin{\left(x \right)}}{3 \cos{\left(x \right)}}\, dx = - \frac{\ln\left(\left|{\cos{\left(x \right)}}\right|\right)}{3} + C$$$A