Integral de $$$\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(2 x \right)} \cos{\left(5 x \right)}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(2 x \right)} \cos{\left(5 x \right)}\, dx$$$.
Solução
Reescreva $$$\cos\left(2 x \right)\cos\left(5 x \right)$$$ utilizando a fórmula $$$\cos\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \cos\left(\alpha-\beta \right)+\frac{1}{2} \cos\left(\alpha+\beta \right)$$$ com $$$\alpha=2 x$$$ e $$$\beta=5 x$$$:
$${\color{red}{\int{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(2 x \right)} \cos{\left(5 x \right)} d x}}} = {\color{red}{\int{\left(\frac{\cos{\left(3 x \right)}}{2} + \frac{\cos{\left(7 x \right)}}{2}\right) \sin{\left(2 x \right)} \sin{\left(5 x \right)} d x}}}$$
Expanda a expressão:
$${\color{red}{\int{\left(\frac{\cos{\left(3 x \right)}}{2} + \frac{\cos{\left(7 x \right)}}{2}\right) \sin{\left(2 x \right)} \sin{\left(5 x \right)} d x}}} = {\color{red}{\int{\left(\frac{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(3 x \right)}}{2} + \frac{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(7 x \right)}}{2}\right)d x}}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=\frac{1}{2}$$$ e $$$f{\left(x \right)} = \sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(3 x \right)} + \sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(7 x \right)}$$$:
$${\color{red}{\int{\left(\frac{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(3 x \right)}}{2} + \frac{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(7 x \right)}}{2}\right)d x}}} = {\color{red}{\left(\frac{\int{\left(\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(3 x \right)} + \sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(7 x \right)}\right)d x}}{2}\right)}}$$
Integre termo a termo:
$$\frac{{\color{red}{\int{\left(\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(3 x \right)} + \sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(7 x \right)}\right)d x}}}}{2} = \frac{{\color{red}{\left(\int{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(3 x \right)} d x} + \int{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(7 x \right)} d x}\right)}}}{2}$$
Reescreva $$$\sin\left(2 x \right)\cos\left(3 x \right)$$$ utilizando a fórmula $$$\sin\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \sin\left(\alpha-\beta \right)+\frac{1}{2} \sin\left(\alpha+\beta \right)$$$ com $$$\alpha=2 x$$$ e $$$\beta=3 x$$$:
$$\frac{\int{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(7 x \right)} d x}}{2} + \frac{{\color{red}{\int{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(3 x \right)} d x}}}}{2} = \frac{\int{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(7 x \right)} d x}}{2} + \frac{{\color{red}{\int{\left(- \frac{\sin{\left(x \right)}}{2} + \frac{\sin{\left(5 x \right)}}{2}\right) \sin{\left(5 x \right)} d x}}}}{2}$$
Expanda a expressão:
$$\frac{\int{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(7 x \right)} d x}}{2} + \frac{{\color{red}{\int{\left(- \frac{\sin{\left(x \right)}}{2} + \frac{\sin{\left(5 x \right)}}{2}\right) \sin{\left(5 x \right)} d x}}}}{2} = \frac{\int{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(7 x \right)} d x}}{2} + \frac{{\color{red}{\int{\left(- \frac{\sin{\left(x \right)} \sin{\left(5 x \right)}}{2} + \frac{\sin^{2}{\left(5 x \right)}}{2}\right)d x}}}}{2}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=\frac{1}{2}$$$ e $$$f{\left(x \right)} = - \sin{\left(x \right)} \sin{\left(5 x \right)} + \sin^{2}{\left(5 x \right)}$$$:
$$\frac{\int{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(7 x \right)} d x}}{2} + \frac{{\color{red}{\int{\left(- \frac{\sin{\left(x \right)} \sin{\left(5 x \right)}}{2} + \frac{\sin^{2}{\left(5 x \right)}}{2}\right)d x}}}}{2} = \frac{\int{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(7 x \right)} d x}}{2} + \frac{{\color{red}{\left(\frac{\int{\left(- \sin{\left(x \right)} \sin{\left(5 x \right)} + \sin^{2}{\left(5 x \right)}\right)d x}}{2}\right)}}}{2}$$
Integre termo a termo:
$$\frac{\int{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(7 x \right)} d x}}{2} + \frac{{\color{red}{\int{\left(- \sin{\left(x \right)} \sin{\left(5 x \right)} + \sin^{2}{\left(5 x \right)}\right)d x}}}}{4} = \frac{\int{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(7 x \right)} d x}}{2} + \frac{{\color{red}{\left(- \int{\sin{\left(x \right)} \sin{\left(5 x \right)} d x} + \int{\sin^{2}{\left(5 x \right)} d x}\right)}}}{4}$$
Seja $$$u=5 x$$$.
Então $$$du=\left(5 x\right)^{\prime }dx = 5 dx$$$ (veja os passos »), e obtemos $$$dx = \frac{du}{5}$$$.
Assim,
$$- \frac{\int{\sin{\left(x \right)} \sin{\left(5 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(7 x \right)} d x}}{2} + \frac{{\color{red}{\int{\sin^{2}{\left(5 x \right)} d x}}}}{4} = - \frac{\int{\sin{\left(x \right)} \sin{\left(5 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(7 x \right)} d x}}{2} + \frac{{\color{red}{\int{\frac{\sin^{2}{\left(u \right)}}{5} d u}}}}{4}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=\frac{1}{5}$$$ e $$$f{\left(u \right)} = \sin^{2}{\left(u \right)}$$$:
$$- \frac{\int{\sin{\left(x \right)} \sin{\left(5 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(7 x \right)} d x}}{2} + \frac{{\color{red}{\int{\frac{\sin^{2}{\left(u \right)}}{5} d u}}}}{4} = - \frac{\int{\sin{\left(x \right)} \sin{\left(5 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(7 x \right)} d x}}{2} + \frac{{\color{red}{\left(\frac{\int{\sin^{2}{\left(u \right)} d u}}{5}\right)}}}{4}$$
Aplique a fórmula de redução de potência $$$\sin^{2}{\left(\alpha \right)} = \frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}$$$ com $$$\alpha= u $$$:
$$- \frac{\int{\sin{\left(x \right)} \sin{\left(5 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(7 x \right)} d x}}{2} + \frac{{\color{red}{\int{\sin^{2}{\left(u \right)} d u}}}}{20} = - \frac{\int{\sin{\left(x \right)} \sin{\left(5 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(7 x \right)} d x}}{2} + \frac{{\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(2 u \right)}}{2}\right)d u}}}}{20}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=\frac{1}{2}$$$ e $$$f{\left(u \right)} = 1 - \cos{\left(2 u \right)}$$$:
$$- \frac{\int{\sin{\left(x \right)} \sin{\left(5 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(7 x \right)} d x}}{2} + \frac{{\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(2 u \right)}}{2}\right)d u}}}}{20} = - \frac{\int{\sin{\left(x \right)} \sin{\left(5 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(7 x \right)} d x}}{2} + \frac{{\color{red}{\left(\frac{\int{\left(1 - \cos{\left(2 u \right)}\right)d u}}{2}\right)}}}{20}$$
Integre termo a termo:
$$- \frac{\int{\sin{\left(x \right)} \sin{\left(5 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(7 x \right)} d x}}{2} + \frac{{\color{red}{\int{\left(1 - \cos{\left(2 u \right)}\right)d u}}}}{40} = - \frac{\int{\sin{\left(x \right)} \sin{\left(5 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(7 x \right)} d x}}{2} + \frac{{\color{red}{\left(\int{1 d u} - \int{\cos{\left(2 u \right)} d u}\right)}}}{40}$$
Aplique a regra da constante $$$\int c\, du = c u$$$ usando $$$c=1$$$:
$$- \frac{\int{\sin{\left(x \right)} \sin{\left(5 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(7 x \right)} d x}}{2} - \frac{\int{\cos{\left(2 u \right)} d u}}{40} + \frac{{\color{red}{\int{1 d u}}}}{40} = - \frac{\int{\sin{\left(x \right)} \sin{\left(5 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(7 x \right)} d x}}{2} - \frac{\int{\cos{\left(2 u \right)} d u}}{40} + \frac{{\color{red}{u}}}{40}$$
Seja $$$v=2 u$$$.
Então $$$dv=\left(2 u\right)^{\prime }du = 2 du$$$ (veja os passos »), e obtemos $$$du = \frac{dv}{2}$$$.
A integral pode ser reescrita como
$$\frac{u}{40} - \frac{\int{\sin{\left(x \right)} \sin{\left(5 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(7 x \right)} d x}}{2} - \frac{{\color{red}{\int{\cos{\left(2 u \right)} d u}}}}{40} = \frac{u}{40} - \frac{\int{\sin{\left(x \right)} \sin{\left(5 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(7 x \right)} d x}}{2} - \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}}}{40}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ usando $$$c=\frac{1}{2}$$$ e $$$f{\left(v \right)} = \cos{\left(v \right)}$$$:
$$\frac{u}{40} - \frac{\int{\sin{\left(x \right)} \sin{\left(5 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(7 x \right)} d x}}{2} - \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}}}{40} = \frac{u}{40} - \frac{\int{\sin{\left(x \right)} \sin{\left(5 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(7 x \right)} d x}}{2} - \frac{{\color{red}{\left(\frac{\int{\cos{\left(v \right)} d v}}{2}\right)}}}{40}$$
A integral do cosseno é $$$\int{\cos{\left(v \right)} d v} = \sin{\left(v \right)}$$$:
$$\frac{u}{40} - \frac{\int{\sin{\left(x \right)} \sin{\left(5 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(7 x \right)} d x}}{2} - \frac{{\color{red}{\int{\cos{\left(v \right)} d v}}}}{80} = \frac{u}{40} - \frac{\int{\sin{\left(x \right)} \sin{\left(5 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(7 x \right)} d x}}{2} - \frac{{\color{red}{\sin{\left(v \right)}}}}{80}$$
Recorde que $$$v=2 u$$$:
$$\frac{u}{40} - \frac{\int{\sin{\left(x \right)} \sin{\left(5 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(7 x \right)} d x}}{2} - \frac{\sin{\left({\color{red}{v}} \right)}}{80} = \frac{u}{40} - \frac{\int{\sin{\left(x \right)} \sin{\left(5 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(7 x \right)} d x}}{2} - \frac{\sin{\left({\color{red}{\left(2 u\right)}} \right)}}{80}$$
Recorde que $$$u=5 x$$$:
$$- \frac{\int{\sin{\left(x \right)} \sin{\left(5 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(7 x \right)} d x}}{2} - \frac{\sin{\left(2 {\color{red}{u}} \right)}}{80} + \frac{{\color{red}{u}}}{40} = - \frac{\int{\sin{\left(x \right)} \sin{\left(5 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(7 x \right)} d x}}{2} - \frac{\sin{\left(2 {\color{red}{\left(5 x\right)}} \right)}}{80} + \frac{{\color{red}{\left(5 x\right)}}}{40}$$
Reescreva o integrando usando a fórmula $$$\sin\left(\alpha \right)\sin\left(\beta \right)=\frac{1}{2} \cos\left(\alpha-\beta \right)-\frac{1}{2} \cos\left(\alpha+\beta \right)$$$ com $$$\alpha=x$$$ e $$$\beta=5 x$$$:
$$\frac{x}{8} - \frac{\sin{\left(10 x \right)}}{80} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(7 x \right)} d x}}{2} - \frac{{\color{red}{\int{\sin{\left(x \right)} \sin{\left(5 x \right)} d x}}}}{4} = \frac{x}{8} - \frac{\sin{\left(10 x \right)}}{80} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(7 x \right)} d x}}{2} - \frac{{\color{red}{\int{\left(\frac{\cos{\left(4 x \right)}}{2} - \frac{\cos{\left(6 x \right)}}{2}\right)d x}}}}{4}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=\frac{1}{2}$$$ e $$$f{\left(x \right)} = \cos{\left(4 x \right)} - \cos{\left(6 x \right)}$$$:
$$\frac{x}{8} - \frac{\sin{\left(10 x \right)}}{80} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(7 x \right)} d x}}{2} - \frac{{\color{red}{\int{\left(\frac{\cos{\left(4 x \right)}}{2} - \frac{\cos{\left(6 x \right)}}{2}\right)d x}}}}{4} = \frac{x}{8} - \frac{\sin{\left(10 x \right)}}{80} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(7 x \right)} d x}}{2} - \frac{{\color{red}{\left(\frac{\int{\left(\cos{\left(4 x \right)} - \cos{\left(6 x \right)}\right)d x}}{2}\right)}}}{4}$$
Integre termo a termo:
$$\frac{x}{8} - \frac{\sin{\left(10 x \right)}}{80} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(7 x \right)} d x}}{2} - \frac{{\color{red}{\int{\left(\cos{\left(4 x \right)} - \cos{\left(6 x \right)}\right)d x}}}}{8} = \frac{x}{8} - \frac{\sin{\left(10 x \right)}}{80} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(7 x \right)} d x}}{2} - \frac{{\color{red}{\left(\int{\cos{\left(4 x \right)} d x} - \int{\cos{\left(6 x \right)} d x}\right)}}}{8}$$
Seja $$$u=6 x$$$.
Então $$$du=\left(6 x\right)^{\prime }dx = 6 dx$$$ (veja os passos »), e obtemos $$$dx = \frac{du}{6}$$$.
Logo,
$$\frac{x}{8} - \frac{\sin{\left(10 x \right)}}{80} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(7 x \right)} d x}}{2} - \frac{\int{\cos{\left(4 x \right)} d x}}{8} + \frac{{\color{red}{\int{\cos{\left(6 x \right)} d x}}}}{8} = \frac{x}{8} - \frac{\sin{\left(10 x \right)}}{80} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(7 x \right)} d x}}{2} - \frac{\int{\cos{\left(4 x \right)} d x}}{8} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{6} d u}}}}{8}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=\frac{1}{6}$$$ e $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$$\frac{x}{8} - \frac{\sin{\left(10 x \right)}}{80} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(7 x \right)} d x}}{2} - \frac{\int{\cos{\left(4 x \right)} d x}}{8} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{6} d u}}}}{8} = \frac{x}{8} - \frac{\sin{\left(10 x \right)}}{80} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(7 x \right)} d x}}{2} - \frac{\int{\cos{\left(4 x \right)} d x}}{8} + \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{6}\right)}}}{8}$$
A integral do cosseno é $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{x}{8} - \frac{\sin{\left(10 x \right)}}{80} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(7 x \right)} d x}}{2} - \frac{\int{\cos{\left(4 x \right)} d x}}{8} + \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{48} = \frac{x}{8} - \frac{\sin{\left(10 x \right)}}{80} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(7 x \right)} d x}}{2} - \frac{\int{\cos{\left(4 x \right)} d x}}{8} + \frac{{\color{red}{\sin{\left(u \right)}}}}{48}$$
Recorde que $$$u=6 x$$$:
$$\frac{x}{8} - \frac{\sin{\left(10 x \right)}}{80} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(7 x \right)} d x}}{2} - \frac{\int{\cos{\left(4 x \right)} d x}}{8} + \frac{\sin{\left({\color{red}{u}} \right)}}{48} = \frac{x}{8} - \frac{\sin{\left(10 x \right)}}{80} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(7 x \right)} d x}}{2} - \frac{\int{\cos{\left(4 x \right)} d x}}{8} + \frac{\sin{\left({\color{red}{\left(6 x\right)}} \right)}}{48}$$
Seja $$$u=4 x$$$.
Então $$$du=\left(4 x\right)^{\prime }dx = 4 dx$$$ (veja os passos »), e obtemos $$$dx = \frac{du}{4}$$$.
Assim,
$$\frac{x}{8} + \frac{\sin{\left(6 x \right)}}{48} - \frac{\sin{\left(10 x \right)}}{80} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(7 x \right)} d x}}{2} - \frac{{\color{red}{\int{\cos{\left(4 x \right)} d x}}}}{8} = \frac{x}{8} + \frac{\sin{\left(6 x \right)}}{48} - \frac{\sin{\left(10 x \right)}}{80} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(7 x \right)} d x}}{2} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{8}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=\frac{1}{4}$$$ e $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$$\frac{x}{8} + \frac{\sin{\left(6 x \right)}}{48} - \frac{\sin{\left(10 x \right)}}{80} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(7 x \right)} d x}}{2} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{8} = \frac{x}{8} + \frac{\sin{\left(6 x \right)}}{48} - \frac{\sin{\left(10 x \right)}}{80} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(7 x \right)} d x}}{2} - \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{4}\right)}}}{8}$$
A integral do cosseno é $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{x}{8} + \frac{\sin{\left(6 x \right)}}{48} - \frac{\sin{\left(10 x \right)}}{80} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(7 x \right)} d x}}{2} - \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{32} = \frac{x}{8} + \frac{\sin{\left(6 x \right)}}{48} - \frac{\sin{\left(10 x \right)}}{80} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(7 x \right)} d x}}{2} - \frac{{\color{red}{\sin{\left(u \right)}}}}{32}$$
Recorde que $$$u=4 x$$$:
$$\frac{x}{8} + \frac{\sin{\left(6 x \right)}}{48} - \frac{\sin{\left(10 x \right)}}{80} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(7 x \right)} d x}}{2} - \frac{\sin{\left({\color{red}{u}} \right)}}{32} = \frac{x}{8} + \frac{\sin{\left(6 x \right)}}{48} - \frac{\sin{\left(10 x \right)}}{80} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(7 x \right)} d x}}{2} - \frac{\sin{\left({\color{red}{\left(4 x\right)}} \right)}}{32}$$
Reescreva $$$\sin\left(2 x \right)\cos\left(7 x \right)$$$ utilizando a fórmula $$$\sin\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \sin\left(\alpha-\beta \right)+\frac{1}{2} \sin\left(\alpha+\beta \right)$$$ com $$$\alpha=2 x$$$ e $$$\beta=7 x$$$:
$$\frac{x}{8} - \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(6 x \right)}}{48} - \frac{\sin{\left(10 x \right)}}{80} + \frac{{\color{red}{\int{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(7 x \right)} d x}}}}{2} = \frac{x}{8} - \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(6 x \right)}}{48} - \frac{\sin{\left(10 x \right)}}{80} + \frac{{\color{red}{\int{\left(- \frac{\sin{\left(5 x \right)}}{2} + \frac{\sin{\left(9 x \right)}}{2}\right) \sin{\left(5 x \right)} d x}}}}{2}$$
Expanda a expressão:
$$\frac{x}{8} - \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(6 x \right)}}{48} - \frac{\sin{\left(10 x \right)}}{80} + \frac{{\color{red}{\int{\left(- \frac{\sin{\left(5 x \right)}}{2} + \frac{\sin{\left(9 x \right)}}{2}\right) \sin{\left(5 x \right)} d x}}}}{2} = \frac{x}{8} - \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(6 x \right)}}{48} - \frac{\sin{\left(10 x \right)}}{80} + \frac{{\color{red}{\int{\left(- \frac{\sin^{2}{\left(5 x \right)}}{2} + \frac{\sin{\left(5 x \right)} \sin{\left(9 x \right)}}{2}\right)d x}}}}{2}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=\frac{1}{2}$$$ e $$$f{\left(x \right)} = - \sin^{2}{\left(5 x \right)} + \sin{\left(5 x \right)} \sin{\left(9 x \right)}$$$:
$$\frac{x}{8} - \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(6 x \right)}}{48} - \frac{\sin{\left(10 x \right)}}{80} + \frac{{\color{red}{\int{\left(- \frac{\sin^{2}{\left(5 x \right)}}{2} + \frac{\sin{\left(5 x \right)} \sin{\left(9 x \right)}}{2}\right)d x}}}}{2} = \frac{x}{8} - \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(6 x \right)}}{48} - \frac{\sin{\left(10 x \right)}}{80} + \frac{{\color{red}{\left(\frac{\int{\left(- \sin^{2}{\left(5 x \right)} + \sin{\left(5 x \right)} \sin{\left(9 x \right)}\right)d x}}{2}\right)}}}{2}$$
Integre termo a termo:
$$\frac{x}{8} - \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(6 x \right)}}{48} - \frac{\sin{\left(10 x \right)}}{80} + \frac{{\color{red}{\int{\left(- \sin^{2}{\left(5 x \right)} + \sin{\left(5 x \right)} \sin{\left(9 x \right)}\right)d x}}}}{4} = \frac{x}{8} - \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(6 x \right)}}{48} - \frac{\sin{\left(10 x \right)}}{80} + \frac{{\color{red}{\left(\int{\sin{\left(5 x \right)} \sin{\left(9 x \right)} d x} - \int{\sin^{2}{\left(5 x \right)} d x}\right)}}}{4}$$
A integral $$$\int{\sin^{2}{\left(5 x \right)} d x}$$$ já foi calculada:
$$\int{\sin^{2}{\left(5 x \right)} d x} = \frac{x}{2} - \frac{\sin{\left(10 x \right)}}{20}$$
Portanto,
$$\frac{x}{8} - \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(6 x \right)}}{48} - \frac{\sin{\left(10 x \right)}}{80} + \frac{\int{\sin{\left(5 x \right)} \sin{\left(9 x \right)} d x}}{4} - \frac{{\color{red}{\int{\sin^{2}{\left(5 x \right)} d x}}}}{4} = \frac{x}{8} - \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(6 x \right)}}{48} - \frac{\sin{\left(10 x \right)}}{80} + \frac{\int{\sin{\left(5 x \right)} \sin{\left(9 x \right)} d x}}{4} - \frac{{\color{red}{\left(\frac{x}{2} - \frac{\sin{\left(10 x \right)}}{20}\right)}}}{4}$$
Reescreva o integrando usando a fórmula $$$\sin\left(\alpha \right)\sin\left(\beta \right)=\frac{1}{2} \cos\left(\alpha-\beta \right)-\frac{1}{2} \cos\left(\alpha+\beta \right)$$$ com $$$\alpha=5 x$$$ e $$$\beta=9 x$$$:
$$- \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(6 x \right)}}{48} + \frac{{\color{red}{\int{\sin{\left(5 x \right)} \sin{\left(9 x \right)} d x}}}}{4} = - \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(6 x \right)}}{48} + \frac{{\color{red}{\int{\left(\frac{\cos{\left(4 x \right)}}{2} - \frac{\cos{\left(14 x \right)}}{2}\right)d x}}}}{4}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=\frac{1}{2}$$$ e $$$f{\left(x \right)} = \cos{\left(4 x \right)} - \cos{\left(14 x \right)}$$$:
$$- \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(6 x \right)}}{48} + \frac{{\color{red}{\int{\left(\frac{\cos{\left(4 x \right)}}{2} - \frac{\cos{\left(14 x \right)}}{2}\right)d x}}}}{4} = - \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(6 x \right)}}{48} + \frac{{\color{red}{\left(\frac{\int{\left(\cos{\left(4 x \right)} - \cos{\left(14 x \right)}\right)d x}}{2}\right)}}}{4}$$
Integre termo a termo:
$$- \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(6 x \right)}}{48} + \frac{{\color{red}{\int{\left(\cos{\left(4 x \right)} - \cos{\left(14 x \right)}\right)d x}}}}{8} = - \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(6 x \right)}}{48} + \frac{{\color{red}{\left(\int{\cos{\left(4 x \right)} d x} - \int{\cos{\left(14 x \right)} d x}\right)}}}{8}$$
Seja $$$v=14 x$$$.
Então $$$dv=\left(14 x\right)^{\prime }dx = 14 dx$$$ (veja os passos »), e obtemos $$$dx = \frac{dv}{14}$$$.
A integral torna-se
$$- \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(6 x \right)}}{48} + \frac{\int{\cos{\left(4 x \right)} d x}}{8} - \frac{{\color{red}{\int{\cos{\left(14 x \right)} d x}}}}{8} = - \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(6 x \right)}}{48} + \frac{\int{\cos{\left(4 x \right)} d x}}{8} - \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{14} d v}}}}{8}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ usando $$$c=\frac{1}{14}$$$ e $$$f{\left(v \right)} = \cos{\left(v \right)}$$$:
$$- \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(6 x \right)}}{48} + \frac{\int{\cos{\left(4 x \right)} d x}}{8} - \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{14} d v}}}}{8} = - \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(6 x \right)}}{48} + \frac{\int{\cos{\left(4 x \right)} d x}}{8} - \frac{{\color{red}{\left(\frac{\int{\cos{\left(v \right)} d v}}{14}\right)}}}{8}$$
A integral do cosseno é $$$\int{\cos{\left(v \right)} d v} = \sin{\left(v \right)}$$$:
$$- \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(6 x \right)}}{48} + \frac{\int{\cos{\left(4 x \right)} d x}}{8} - \frac{{\color{red}{\int{\cos{\left(v \right)} d v}}}}{112} = - \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(6 x \right)}}{48} + \frac{\int{\cos{\left(4 x \right)} d x}}{8} - \frac{{\color{red}{\sin{\left(v \right)}}}}{112}$$
Recorde que $$$v=14 x$$$:
$$- \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(6 x \right)}}{48} + \frac{\int{\cos{\left(4 x \right)} d x}}{8} - \frac{\sin{\left({\color{red}{v}} \right)}}{112} = - \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(6 x \right)}}{48} + \frac{\int{\cos{\left(4 x \right)} d x}}{8} - \frac{\sin{\left({\color{red}{\left(14 x\right)}} \right)}}{112}$$
A integral $$$\int{\cos{\left(4 x \right)} d x}$$$ já foi calculada:
$$\int{\cos{\left(4 x \right)} d x} = \frac{\sin{\left(4 x \right)}}{4}$$
Portanto,
$$- \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(6 x \right)}}{48} - \frac{\sin{\left(14 x \right)}}{112} + \frac{{\color{red}{\int{\cos{\left(4 x \right)} d x}}}}{8} = - \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(6 x \right)}}{48} - \frac{\sin{\left(14 x \right)}}{112} + \frac{{\color{red}{\left(\frac{\sin{\left(4 x \right)}}{4}\right)}}}{8}$$
Portanto,
$$\int{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(2 x \right)} \cos{\left(5 x \right)} d x} = \frac{\sin{\left(6 x \right)}}{48} - \frac{\sin{\left(14 x \right)}}{112}$$
Adicione a constante de integração:
$$\int{\sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(2 x \right)} \cos{\left(5 x \right)} d x} = \frac{\sin{\left(6 x \right)}}{48} - \frac{\sin{\left(14 x \right)}}{112}+C$$
Resposta
$$$\int \sin{\left(2 x \right)} \sin{\left(5 x \right)} \cos{\left(2 x \right)} \cos{\left(5 x \right)}\, dx = \left(\frac{\sin{\left(6 x \right)}}{48} - \frac{\sin{\left(14 x \right)}}{112}\right) + C$$$A