Integral de $$$\left(2 - 3 \sin^{2}{\left(x \right)}\right) \sin{\left(x \right)}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \left(2 - 3 \sin^{2}{\left(x \right)}\right) \sin{\left(x \right)}\, dx$$$.
Solução
Expand the expression:
$${\color{red}{\int{\left(2 - 3 \sin^{2}{\left(x \right)}\right) \sin{\left(x \right)} d x}}} = {\color{red}{\int{\left(- 3 \sin^{3}{\left(x \right)} + 2 \sin{\left(x \right)}\right)d x}}}$$
Integre termo a termo:
$${\color{red}{\int{\left(- 3 \sin^{3}{\left(x \right)} + 2 \sin{\left(x \right)}\right)d x}}} = {\color{red}{\left(\int{2 \sin{\left(x \right)} d x} - \int{3 \sin^{3}{\left(x \right)} d x}\right)}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=3$$$ e $$$f{\left(x \right)} = \sin^{3}{\left(x \right)}$$$:
$$\int{2 \sin{\left(x \right)} d x} - {\color{red}{\int{3 \sin^{3}{\left(x \right)} d x}}} = \int{2 \sin{\left(x \right)} d x} - {\color{red}{\left(3 \int{\sin^{3}{\left(x \right)} d x}\right)}}$$
Separe um fator de seno e escreva todo o restante em termos do cosseno, usando a fórmula $$$\sin^2\left(\alpha \right)=-\cos^2\left(\alpha \right)+1$$$ com $$$\alpha=x$$$:
$$\int{2 \sin{\left(x \right)} d x} - 3 {\color{red}{\int{\sin^{3}{\left(x \right)} d x}}} = \int{2 \sin{\left(x \right)} d x} - 3 {\color{red}{\int{\left(1 - \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)} d x}}}$$
Seja $$$u=\cos{\left(x \right)}$$$.
Então $$$du=\left(\cos{\left(x \right)}\right)^{\prime }dx = - \sin{\left(x \right)} dx$$$ (veja os passos »), e obtemos $$$\sin{\left(x \right)} dx = - du$$$.
A integral torna-se
$$\int{2 \sin{\left(x \right)} d x} - 3 {\color{red}{\int{\left(1 - \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)} d x}}} = \int{2 \sin{\left(x \right)} d x} - 3 {\color{red}{\int{\left(u^{2} - 1\right)d u}}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=-1$$$ e $$$f{\left(u \right)} = 1 - u^{2}$$$:
$$\int{2 \sin{\left(x \right)} d x} - 3 {\color{red}{\int{\left(u^{2} - 1\right)d u}}} = \int{2 \sin{\left(x \right)} d x} - 3 {\color{red}{\left(- \int{\left(1 - u^{2}\right)d u}\right)}}$$
Integre termo a termo:
$$\int{2 \sin{\left(x \right)} d x} + 3 {\color{red}{\int{\left(1 - u^{2}\right)d u}}} = \int{2 \sin{\left(x \right)} d x} + 3 {\color{red}{\left(\int{1 d u} - \int{u^{2} d u}\right)}}$$
Aplique a regra da constante $$$\int c\, du = c u$$$ usando $$$c=1$$$:
$$\int{2 \sin{\left(x \right)} d x} - 3 \int{u^{2} d u} + 3 {\color{red}{\int{1 d u}}} = \int{2 \sin{\left(x \right)} d x} - 3 \int{u^{2} d u} + 3 {\color{red}{u}}$$
Aplique a regra da potência $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ com $$$n=2$$$:
$$3 u + \int{2 \sin{\left(x \right)} d x} - 3 {\color{red}{\int{u^{2} d u}}}=3 u + \int{2 \sin{\left(x \right)} d x} - 3 {\color{red}{\frac{u^{1 + 2}}{1 + 2}}}=3 u + \int{2 \sin{\left(x \right)} d x} - 3 {\color{red}{\left(\frac{u^{3}}{3}\right)}}$$
Recorde que $$$u=\cos{\left(x \right)}$$$:
$$\int{2 \sin{\left(x \right)} d x} + 3 {\color{red}{u}} - {\color{red}{u}}^{3} = \int{2 \sin{\left(x \right)} d x} + 3 {\color{red}{\cos{\left(x \right)}}} - {\color{red}{\cos{\left(x \right)}}}^{3}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=2$$$ e $$$f{\left(x \right)} = \sin{\left(x \right)}$$$:
$$- \cos^{3}{\left(x \right)} + 3 \cos{\left(x \right)} + {\color{red}{\int{2 \sin{\left(x \right)} d x}}} = - \cos^{3}{\left(x \right)} + 3 \cos{\left(x \right)} + {\color{red}{\left(2 \int{\sin{\left(x \right)} d x}\right)}}$$
A integral do seno é $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:
$$- \cos^{3}{\left(x \right)} + 3 \cos{\left(x \right)} + 2 {\color{red}{\int{\sin{\left(x \right)} d x}}} = - \cos^{3}{\left(x \right)} + 3 \cos{\left(x \right)} + 2 {\color{red}{\left(- \cos{\left(x \right)}\right)}}$$
Portanto,
$$\int{\left(2 - 3 \sin^{2}{\left(x \right)}\right) \sin{\left(x \right)} d x} = - \cos^{3}{\left(x \right)} + \cos{\left(x \right)}$$
Adicione a constante de integração:
$$\int{\left(2 - 3 \sin^{2}{\left(x \right)}\right) \sin{\left(x \right)} d x} = - \cos^{3}{\left(x \right)} + \cos{\left(x \right)}+C$$
Resposta
$$$\int \left(2 - 3 \sin^{2}{\left(x \right)}\right) \sin{\left(x \right)}\, dx = \left(- \cos^{3}{\left(x \right)} + \cos{\left(x \right)}\right) + C$$$A