Integral de $$$\sin{\left(3 x \right)} \cos{\left(2 x \right)}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \sin{\left(3 x \right)} \cos{\left(2 x \right)}\, dx$$$.
Solução
Reescreva o integrando usando a fórmula $$$\sin\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \sin\left(\alpha-\beta \right)+\frac{1}{2} \sin\left(\alpha+\beta \right)$$$ com $$$\alpha=3 x$$$ e $$$\beta=2 x$$$:
$${\color{red}{\int{\sin{\left(3 x \right)} \cos{\left(2 x \right)} d x}}} = {\color{red}{\int{\left(\frac{\sin{\left(x \right)}}{2} + \frac{\sin{\left(5 x \right)}}{2}\right)d x}}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=\frac{1}{2}$$$ e $$$f{\left(x \right)} = \sin{\left(x \right)} + \sin{\left(5 x \right)}$$$:
$${\color{red}{\int{\left(\frac{\sin{\left(x \right)}}{2} + \frac{\sin{\left(5 x \right)}}{2}\right)d x}}} = {\color{red}{\left(\frac{\int{\left(\sin{\left(x \right)} + \sin{\left(5 x \right)}\right)d x}}{2}\right)}}$$
Integre termo a termo:
$$\frac{{\color{red}{\int{\left(\sin{\left(x \right)} + \sin{\left(5 x \right)}\right)d x}}}}{2} = \frac{{\color{red}{\left(\int{\sin{\left(x \right)} d x} + \int{\sin{\left(5 x \right)} d x}\right)}}}{2}$$
A integral do seno é $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:
$$\frac{\int{\sin{\left(5 x \right)} d x}}{2} + \frac{{\color{red}{\int{\sin{\left(x \right)} d x}}}}{2} = \frac{\int{\sin{\left(5 x \right)} d x}}{2} + \frac{{\color{red}{\left(- \cos{\left(x \right)}\right)}}}{2}$$
Seja $$$u=5 x$$$.
Então $$$du=\left(5 x\right)^{\prime }dx = 5 dx$$$ (veja os passos »), e obtemos $$$dx = \frac{du}{5}$$$.
A integral torna-se
$$- \frac{\cos{\left(x \right)}}{2} + \frac{{\color{red}{\int{\sin{\left(5 x \right)} d x}}}}{2} = - \frac{\cos{\left(x \right)}}{2} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{5} d u}}}}{2}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=\frac{1}{5}$$$ e $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$$- \frac{\cos{\left(x \right)}}{2} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{5} d u}}}}{2} = - \frac{\cos{\left(x \right)}}{2} + \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{5}\right)}}}{2}$$
A integral do seno é $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$- \frac{\cos{\left(x \right)}}{2} + \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{10} = - \frac{\cos{\left(x \right)}}{2} + \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{10}$$
Recorde que $$$u=5 x$$$:
$$- \frac{\cos{\left(x \right)}}{2} - \frac{\cos{\left({\color{red}{u}} \right)}}{10} = - \frac{\cos{\left(x \right)}}{2} - \frac{\cos{\left({\color{red}{\left(5 x\right)}} \right)}}{10}$$
Portanto,
$$\int{\sin{\left(3 x \right)} \cos{\left(2 x \right)} d x} = - \frac{\cos{\left(x \right)}}{2} - \frac{\cos{\left(5 x \right)}}{10}$$
Adicione a constante de integração:
$$\int{\sin{\left(3 x \right)} \cos{\left(2 x \right)} d x} = - \frac{\cos{\left(x \right)}}{2} - \frac{\cos{\left(5 x \right)}}{10}+C$$
Resposta
$$$\int \sin{\left(3 x \right)} \cos{\left(2 x \right)}\, dx = \left(- \frac{\cos{\left(x \right)}}{2} - \frac{\cos{\left(5 x \right)}}{10}\right) + C$$$A