Integral de $$$\frac{\sin^{2}{\left(z \right)}}{- \frac{\pi}{6} + z}$$$ em relação a $$$\pi$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \frac{\sin^{2}{\left(z \right)}}{- \frac{\pi}{6} + z}\, d\pi$$$.
Solução
Aplique a regra do múltiplo constante $$$\int c f{\left(\pi \right)}\, d\pi = c \int f{\left(\pi \right)}\, d\pi$$$ usando $$$c=\sin^{2}{\left(z \right)}$$$ e $$$f{\left(\pi \right)} = \frac{1}{- \frac{\pi}{6} + z}$$$:
$${\color{red}{\int{\frac{\sin^{2}{\left(z \right)}}{- \frac{\pi}{6} + z} d \pi}}} = {\color{red}{\sin^{2}{\left(z \right)} \int{\frac{1}{- \frac{\pi}{6} + z} d \pi}}}$$
Seja $$$u=- \frac{\pi}{6} + z$$$.
Então $$$du=\left(- \frac{\pi}{6} + z\right)^{\prime }d\pi = - \frac{d\pi}{6}$$$ (veja os passos »), e obtemos $$$d\pi = - 6 du$$$.
A integral pode ser reescrita como
$$\sin^{2}{\left(z \right)} {\color{red}{\int{\frac{1}{- \frac{\pi}{6} + z} d \pi}}} = \sin^{2}{\left(z \right)} {\color{red}{\int{\left(- \frac{6}{u}\right)d u}}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=-6$$$ e $$$f{\left(u \right)} = \frac{1}{u}$$$:
$$\sin^{2}{\left(z \right)} {\color{red}{\int{\left(- \frac{6}{u}\right)d u}}} = \sin^{2}{\left(z \right)} {\color{red}{\left(- 6 \int{\frac{1}{u} d u}\right)}}$$
A integral de $$$\frac{1}{u}$$$ é $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- 6 \sin^{2}{\left(z \right)} {\color{red}{\int{\frac{1}{u} d u}}} = - 6 \sin^{2}{\left(z \right)} {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Recorde que $$$u=- \frac{\pi}{6} + z$$$:
$$- 6 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} \sin^{2}{\left(z \right)} = - 6 \ln{\left(\left|{{\color{red}{\left(- \frac{\pi}{6} + z\right)}}}\right| \right)} \sin^{2}{\left(z \right)}$$
Portanto,
$$\int{\frac{\sin^{2}{\left(z \right)}}{- \frac{\pi}{6} + z} d \pi} = - 6 \ln{\left(\left|{\frac{\pi}{6} - z}\right| \right)} \sin^{2}{\left(z \right)}$$
Simplifique:
$$\int{\frac{\sin^{2}{\left(z \right)}}{- \frac{\pi}{6} + z} d \pi} = 6 \left(- \ln{\left(\left|{\pi - 6 z}\right| \right)} + \ln{\left(6 \right)}\right) \sin^{2}{\left(z \right)}$$
Adicione a constante de integração:
$$\int{\frac{\sin^{2}{\left(z \right)}}{- \frac{\pi}{6} + z} d \pi} = 6 \left(- \ln{\left(\left|{\pi - 6 z}\right| \right)} + \ln{\left(6 \right)}\right) \sin^{2}{\left(z \right)}+C$$
Resposta
$$$\int \frac{\sin^{2}{\left(z \right)}}{- \frac{\pi}{6} + z}\, d\pi = 6 \left(- \ln\left(\left|{\pi - 6 z}\right|\right) + \ln\left(6\right)\right) \sin^{2}{\left(z \right)} + C$$$A