Integral de $$$\sin{\left(44 x \right)} \sin{\left(\cos{\left(44 x \right)} \right)}$$$

A calculadora encontrará a integral/antiderivada de $$$\sin{\left(44 x \right)} \sin{\left(\cos{\left(44 x \right)} \right)}$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int \sin{\left(44 x \right)} \sin{\left(\cos{\left(44 x \right)} \right)}\, dx$$$.

Solução

Seja $$$u=44 x$$$.

Então $$$du=\left(44 x\right)^{\prime }dx = 44 dx$$$ (veja os passos »), e obtemos $$$dx = \frac{du}{44}$$$.

A integral torna-se

$${\color{red}{\int{\sin{\left(44 x \right)} \sin{\left(\cos{\left(44 x \right)} \right)} d x}}} = {\color{red}{\int{\frac{\sin{\left(u \right)} \sin{\left(\cos{\left(u \right)} \right)}}{44} d u}}}$$

Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=\frac{1}{44}$$$ e $$$f{\left(u \right)} = \sin{\left(u \right)} \sin{\left(\cos{\left(u \right)} \right)}$$$:

$${\color{red}{\int{\frac{\sin{\left(u \right)} \sin{\left(\cos{\left(u \right)} \right)}}{44} d u}}} = {\color{red}{\left(\frac{\int{\sin{\left(u \right)} \sin{\left(\cos{\left(u \right)} \right)} d u}}{44}\right)}}$$

Seja $$$v=\cos{\left(u \right)}$$$.

Então $$$dv=\left(\cos{\left(u \right)}\right)^{\prime }du = - \sin{\left(u \right)} du$$$ (veja os passos »), e obtemos $$$\sin{\left(u \right)} du = - dv$$$.

A integral pode ser reescrita como

$$\frac{{\color{red}{\int{\sin{\left(u \right)} \sin{\left(\cos{\left(u \right)} \right)} d u}}}}{44} = \frac{{\color{red}{\int{\left(- \sin{\left(v \right)}\right)d v}}}}{44}$$

Aplique a regra do múltiplo constante $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ usando $$$c=-1$$$ e $$$f{\left(v \right)} = \sin{\left(v \right)}$$$:

$$\frac{{\color{red}{\int{\left(- \sin{\left(v \right)}\right)d v}}}}{44} = \frac{{\color{red}{\left(- \int{\sin{\left(v \right)} d v}\right)}}}{44}$$

A integral do seno é $$$\int{\sin{\left(v \right)} d v} = - \cos{\left(v \right)}$$$:

$$- \frac{{\color{red}{\int{\sin{\left(v \right)} d v}}}}{44} = - \frac{{\color{red}{\left(- \cos{\left(v \right)}\right)}}}{44}$$

Recorde que $$$v=\cos{\left(u \right)}$$$:

$$\frac{\cos{\left({\color{red}{v}} \right)}}{44} = \frac{\cos{\left({\color{red}{\cos{\left(u \right)}}} \right)}}{44}$$

Recorde que $$$u=44 x$$$:

$$\frac{\cos{\left(\cos{\left({\color{red}{u}} \right)} \right)}}{44} = \frac{\cos{\left(\cos{\left({\color{red}{\left(44 x\right)}} \right)} \right)}}{44}$$

Portanto,

$$\int{\sin{\left(44 x \right)} \sin{\left(\cos{\left(44 x \right)} \right)} d x} = \frac{\cos{\left(\cos{\left(44 x \right)} \right)}}{44}$$

Adicione a constante de integração:

$$\int{\sin{\left(44 x \right)} \sin{\left(\cos{\left(44 x \right)} \right)} d x} = \frac{\cos{\left(\cos{\left(44 x \right)} \right)}}{44}+C$$

Resposta

$$$\int \sin{\left(44 x \right)} \sin{\left(\cos{\left(44 x \right)} \right)}\, dx = \frac{\cos{\left(\cos{\left(44 x \right)} \right)}}{44} + C$$$A


Please try a new game Rotatly