Integral de $$$\sin{\left(5 x \right)} \cos^{2}{\left(5 x \right)}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \sin{\left(5 x \right)} \cos^{2}{\left(5 x \right)}\, dx$$$.
Solução
Seja $$$u=\cos{\left(5 x \right)}$$$.
Então $$$du=\left(\cos{\left(5 x \right)}\right)^{\prime }dx = - 5 \sin{\left(5 x \right)} dx$$$ (veja os passos »), e obtemos $$$\sin{\left(5 x \right)} dx = - \frac{du}{5}$$$.
Logo,
$${\color{red}{\int{\sin{\left(5 x \right)} \cos^{2}{\left(5 x \right)} d x}}} = {\color{red}{\int{\left(- \frac{u^{2}}{5}\right)d u}}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=- \frac{1}{5}$$$ e $$$f{\left(u \right)} = u^{2}$$$:
$${\color{red}{\int{\left(- \frac{u^{2}}{5}\right)d u}}} = {\color{red}{\left(- \frac{\int{u^{2} d u}}{5}\right)}}$$
Aplique a regra da potência $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ com $$$n=2$$$:
$$- \frac{{\color{red}{\int{u^{2} d u}}}}{5}=- \frac{{\color{red}{\frac{u^{1 + 2}}{1 + 2}}}}{5}=- \frac{{\color{red}{\left(\frac{u^{3}}{3}\right)}}}{5}$$
Recorde que $$$u=\cos{\left(5 x \right)}$$$:
$$- \frac{{\color{red}{u}}^{3}}{15} = - \frac{{\color{red}{\cos{\left(5 x \right)}}}^{3}}{15}$$
Portanto,
$$\int{\sin{\left(5 x \right)} \cos^{2}{\left(5 x \right)} d x} = - \frac{\cos^{3}{\left(5 x \right)}}{15}$$
Adicione a constante de integração:
$$\int{\sin{\left(5 x \right)} \cos^{2}{\left(5 x \right)} d x} = - \frac{\cos^{3}{\left(5 x \right)}}{15}+C$$
Resposta
$$$\int \sin{\left(5 x \right)} \cos^{2}{\left(5 x \right)}\, dx = - \frac{\cos^{3}{\left(5 x \right)}}{15} + C$$$A