Integral de $$$\sin{\left(\sin{\left(x \right)} \right)} \cos{\left(x \right)}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \sin{\left(\sin{\left(x \right)} \right)} \cos{\left(x \right)}\, dx$$$.
Solução
Seja $$$u=\sin{\left(x \right)}$$$.
Então $$$du=\left(\sin{\left(x \right)}\right)^{\prime }dx = \cos{\left(x \right)} dx$$$ (veja os passos »), e obtemos $$$\cos{\left(x \right)} dx = du$$$.
A integral pode ser reescrita como
$${\color{red}{\int{\sin{\left(\sin{\left(x \right)} \right)} \cos{\left(x \right)} d x}}} = {\color{red}{\int{\sin{\left(u \right)} d u}}}$$
A integral do seno é $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$${\color{red}{\int{\sin{\left(u \right)} d u}}} = {\color{red}{\left(- \cos{\left(u \right)}\right)}}$$
Recorde que $$$u=\sin{\left(x \right)}$$$:
$$- \cos{\left({\color{red}{u}} \right)} = - \cos{\left({\color{red}{\sin{\left(x \right)}}} \right)}$$
Portanto,
$$\int{\sin{\left(\sin{\left(x \right)} \right)} \cos{\left(x \right)} d x} = - \cos{\left(\sin{\left(x \right)} \right)}$$
Adicione a constante de integração:
$$\int{\sin{\left(\sin{\left(x \right)} \right)} \cos{\left(x \right)} d x} = - \cos{\left(\sin{\left(x \right)} \right)}+C$$
Resposta
$$$\int \sin{\left(\sin{\left(x \right)} \right)} \cos{\left(x \right)}\, dx = - \cos{\left(\sin{\left(x \right)} \right)} + C$$$A