Integral de $$$\pi \cos^{2}{\left(x \right)}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \pi \cos^{2}{\left(x \right)}\, dx$$$.
Solução
Aplique a fórmula de redução de potência $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$ com $$$\alpha=x$$$:
$${\color{red}{\int{\pi \cos^{2}{\left(x \right)} d x}}} = {\color{red}{\int{\frac{\pi \left(\cos{\left(2 x \right)} + 1\right)}{2} d x}}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=\frac{1}{2}$$$ e $$$f{\left(x \right)} = \pi \left(\cos{\left(2 x \right)} + 1\right)$$$:
$${\color{red}{\int{\frac{\pi \left(\cos{\left(2 x \right)} + 1\right)}{2} d x}}} = {\color{red}{\left(\frac{\int{\pi \left(\cos{\left(2 x \right)} + 1\right) d x}}{2}\right)}}$$
Expand the expression:
$$\frac{{\color{red}{\int{\pi \left(\cos{\left(2 x \right)} + 1\right) d x}}}}{2} = \frac{{\color{red}{\int{\left(\pi \cos{\left(2 x \right)} + \pi\right)d x}}}}{2}$$
Integre termo a termo:
$$\frac{{\color{red}{\int{\left(\pi \cos{\left(2 x \right)} + \pi\right)d x}}}}{2} = \frac{{\color{red}{\left(\int{\pi d x} + \int{\pi \cos{\left(2 x \right)} d x}\right)}}}{2}$$
Aplique a regra da constante $$$\int c\, dx = c x$$$ usando $$$c=\pi$$$:
$$\frac{\int{\pi \cos{\left(2 x \right)} d x}}{2} + \frac{{\color{red}{\int{\pi d x}}}}{2} = \frac{\int{\pi \cos{\left(2 x \right)} d x}}{2} + \frac{{\color{red}{\pi x}}}{2}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=\pi$$$ e $$$f{\left(x \right)} = \cos{\left(2 x \right)}$$$:
$$\frac{\pi x}{2} + \frac{{\color{red}{\int{\pi \cos{\left(2 x \right)} d x}}}}{2} = \frac{\pi x}{2} + \frac{{\color{red}{\pi \int{\cos{\left(2 x \right)} d x}}}}{2}$$
Seja $$$u=2 x$$$.
Então $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (veja os passos »), e obtemos $$$dx = \frac{du}{2}$$$.
A integral torna-se
$$\frac{\pi x}{2} + \frac{\pi {\color{red}{\int{\cos{\left(2 x \right)} d x}}}}{2} = \frac{\pi x}{2} + \frac{\pi {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{2}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=\frac{1}{2}$$$ e $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$$\frac{\pi x}{2} + \frac{\pi {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{2} = \frac{\pi x}{2} + \frac{\pi {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}}{2}$$
A integral do cosseno é $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{\pi x}{2} + \frac{\pi {\color{red}{\int{\cos{\left(u \right)} d u}}}}{4} = \frac{\pi x}{2} + \frac{\pi {\color{red}{\sin{\left(u \right)}}}}{4}$$
Recorde que $$$u=2 x$$$:
$$\frac{\pi x}{2} + \frac{\pi \sin{\left({\color{red}{u}} \right)}}{4} = \frac{\pi x}{2} + \frac{\pi \sin{\left({\color{red}{\left(2 x\right)}} \right)}}{4}$$
Portanto,
$$\int{\pi \cos^{2}{\left(x \right)} d x} = \frac{\pi x}{2} + \frac{\pi \sin{\left(2 x \right)}}{4}$$
Simplifique:
$$\int{\pi \cos^{2}{\left(x \right)} d x} = \frac{\pi \left(2 x + \sin{\left(2 x \right)}\right)}{4}$$
Adicione a constante de integração:
$$\int{\pi \cos^{2}{\left(x \right)} d x} = \frac{\pi \left(2 x + \sin{\left(2 x \right)}\right)}{4}+C$$
Resposta
$$$\int \pi \cos^{2}{\left(x \right)}\, dx = \frac{\pi \left(2 x + \sin{\left(2 x \right)}\right)}{4} + C$$$A