Integral de $$$\ln\left(\frac{1}{1 - x}\right)$$$

A calculadora encontrará a integral/antiderivada de $$$\ln\left(\frac{1}{1 - x}\right)$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int \left(- \ln\left(1 - x\right)\right)\, dx$$$.

Solução

A entrada é reescrita como: $$$\int{\ln{\left(\frac{1}{1 - x} \right)} d x}=\int{\left(- \ln{\left(1 - x \right)}\right)d x}$$$.

Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=-1$$$ e $$$f{\left(x \right)} = \ln{\left(1 - x \right)}$$$:

$${\color{red}{\int{\left(- \ln{\left(1 - x \right)}\right)d x}}} = {\color{red}{\left(- \int{\ln{\left(1 - x \right)} d x}\right)}}$$

Seja $$$u=1 - x$$$.

Então $$$du=\left(1 - x\right)^{\prime }dx = - dx$$$ (veja os passos »), e obtemos $$$dx = - du$$$.

A integral torna-se

$$- {\color{red}{\int{\ln{\left(1 - x \right)} d x}}} = - {\color{red}{\int{\left(- \ln{\left(u \right)}\right)d u}}}$$

Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=-1$$$ e $$$f{\left(u \right)} = \ln{\left(u \right)}$$$:

$$- {\color{red}{\int{\left(- \ln{\left(u \right)}\right)d u}}} = - {\color{red}{\left(- \int{\ln{\left(u \right)} d u}\right)}}$$

Para a integral $$$\int{\ln{\left(u \right)} d u}$$$, use integração por partes $$$\int \operatorname{\kappa} \operatorname{dv} = \operatorname{\kappa}\operatorname{v} - \int \operatorname{v} \operatorname{d\kappa}$$$.

Sejam $$$\operatorname{\kappa}=\ln{\left(u \right)}$$$ e $$$\operatorname{dv}=du$$$.

Então $$$\operatorname{d\kappa}=\left(\ln{\left(u \right)}\right)^{\prime }du=\frac{du}{u}$$$ (os passos podem ser vistos ») e $$$\operatorname{v}=\int{1 d u}=u$$$ (os passos podem ser vistos »).

Assim,

$${\color{red}{\int{\ln{\left(u \right)} d u}}}={\color{red}{\left(\ln{\left(u \right)} \cdot u-\int{u \cdot \frac{1}{u} d u}\right)}}={\color{red}{\left(u \ln{\left(u \right)} - \int{1 d u}\right)}}$$

Aplique a regra da constante $$$\int c\, du = c u$$$ usando $$$c=1$$$:

$$u \ln{\left(u \right)} - {\color{red}{\int{1 d u}}} = u \ln{\left(u \right)} - {\color{red}{u}}$$

Recorde que $$$u=1 - x$$$:

$$- {\color{red}{u}} + {\color{red}{u}} \ln{\left({\color{red}{u}} \right)} = - {\color{red}{\left(1 - x\right)}} + {\color{red}{\left(1 - x\right)}} \ln{\left({\color{red}{\left(1 - x\right)}} \right)}$$

Portanto,

$$\int{\left(- \ln{\left(1 - x \right)}\right)d x} = x + \left(1 - x\right) \ln{\left(1 - x \right)} - 1$$

Simplifique:

$$\int{\left(- \ln{\left(1 - x \right)}\right)d x} = x - \left(x - 1\right) \ln{\left(1 - x \right)} - 1$$

Adicione a constante de integração (e remova a constante da expressão):

$$\int{\left(- \ln{\left(1 - x \right)}\right)d x} = x - \left(x - 1\right) \ln{\left(1 - x \right)}+C$$

Resposta

$$$\int \left(- \ln\left(1 - x\right)\right)\, dx = \left(x - \left(x - 1\right) \ln\left(1 - x\right)\right) + C$$$A


Please try a new game Rotatly