Integral de $$$e - \ln\left(x + 1\right)$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \left(e - \ln\left(x + 1\right)\right)\, dx$$$.
Solução
Integre termo a termo:
$${\color{red}{\int{\left(e - \ln{\left(x + 1 \right)}\right)d x}}} = {\color{red}{\left(\int{e d x} - \int{\ln{\left(x + 1 \right)} d x}\right)}}$$
Aplique a regra da constante $$$\int c\, dx = c x$$$ usando $$$c=e$$$:
$$- \int{\ln{\left(x + 1 \right)} d x} + {\color{red}{\int{e d x}}} = - \int{\ln{\left(x + 1 \right)} d x} + {\color{red}{e x}}$$
Seja $$$u=x + 1$$$.
Então $$$du=\left(x + 1\right)^{\prime }dx = 1 dx$$$ (veja os passos »), e obtemos $$$dx = du$$$.
A integral torna-se
$$e x - {\color{red}{\int{\ln{\left(x + 1 \right)} d x}}} = e x - {\color{red}{\int{\ln{\left(u \right)} d u}}}$$
Para a integral $$$\int{\ln{\left(u \right)} d u}$$$, use integração por partes $$$\int \operatorname{\kappa} \operatorname{dv} = \operatorname{\kappa}\operatorname{v} - \int \operatorname{v} \operatorname{d\kappa}$$$.
Sejam $$$\operatorname{\kappa}=\ln{\left(u \right)}$$$ e $$$\operatorname{dv}=du$$$.
Então $$$\operatorname{d\kappa}=\left(\ln{\left(u \right)}\right)^{\prime }du=\frac{du}{u}$$$ (os passos podem ser vistos ») e $$$\operatorname{v}=\int{1 d u}=u$$$ (os passos podem ser vistos »).
Assim,
$$e x - {\color{red}{\int{\ln{\left(u \right)} d u}}}=e x - {\color{red}{\left(\ln{\left(u \right)} \cdot u-\int{u \cdot \frac{1}{u} d u}\right)}}=e x - {\color{red}{\left(u \ln{\left(u \right)} - \int{1 d u}\right)}}$$
Aplique a regra da constante $$$\int c\, du = c u$$$ usando $$$c=1$$$:
$$- u \ln{\left(u \right)} + e x + {\color{red}{\int{1 d u}}} = - u \ln{\left(u \right)} + e x + {\color{red}{u}}$$
Recorde que $$$u=x + 1$$$:
$$e x + {\color{red}{u}} - {\color{red}{u}} \ln{\left({\color{red}{u}} \right)} = e x + {\color{red}{\left(x + 1\right)}} - {\color{red}{\left(x + 1\right)}} \ln{\left({\color{red}{\left(x + 1\right)}} \right)}$$
Portanto,
$$\int{\left(e - \ln{\left(x + 1 \right)}\right)d x} = x + e x - \left(x + 1\right) \ln{\left(x + 1 \right)} + 1$$
Adicione a constante de integração (e remova a constante da expressão):
$$\int{\left(e - \ln{\left(x + 1 \right)}\right)d x} = x + e x - \left(x + 1\right) \ln{\left(x + 1 \right)}+C$$
Resposta
$$$\int \left(e - \ln\left(x + 1\right)\right)\, dx = \left(x + e x - \left(x + 1\right) \ln\left(x + 1\right)\right) + C$$$A