Integral de $$$e - \ln\left(x + 1\right)$$$

A calculadora encontrará a integral/antiderivada de $$$e - \ln\left(x + 1\right)$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int \left(e - \ln\left(x + 1\right)\right)\, dx$$$.

Solução

Integre termo a termo:

$${\color{red}{\int{\left(e - \ln{\left(x + 1 \right)}\right)d x}}} = {\color{red}{\left(\int{e d x} - \int{\ln{\left(x + 1 \right)} d x}\right)}}$$

Aplique a regra da constante $$$\int c\, dx = c x$$$ usando $$$c=e$$$:

$$- \int{\ln{\left(x + 1 \right)} d x} + {\color{red}{\int{e d x}}} = - \int{\ln{\left(x + 1 \right)} d x} + {\color{red}{e x}}$$

Seja $$$u=x + 1$$$.

Então $$$du=\left(x + 1\right)^{\prime }dx = 1 dx$$$ (veja os passos »), e obtemos $$$dx = du$$$.

A integral torna-se

$$e x - {\color{red}{\int{\ln{\left(x + 1 \right)} d x}}} = e x - {\color{red}{\int{\ln{\left(u \right)} d u}}}$$

Para a integral $$$\int{\ln{\left(u \right)} d u}$$$, use integração por partes $$$\int \operatorname{\kappa} \operatorname{dv} = \operatorname{\kappa}\operatorname{v} - \int \operatorname{v} \operatorname{d\kappa}$$$.

Sejam $$$\operatorname{\kappa}=\ln{\left(u \right)}$$$ e $$$\operatorname{dv}=du$$$.

Então $$$\operatorname{d\kappa}=\left(\ln{\left(u \right)}\right)^{\prime }du=\frac{du}{u}$$$ (os passos podem ser vistos ») e $$$\operatorname{v}=\int{1 d u}=u$$$ (os passos podem ser vistos »).

Assim,

$$e x - {\color{red}{\int{\ln{\left(u \right)} d u}}}=e x - {\color{red}{\left(\ln{\left(u \right)} \cdot u-\int{u \cdot \frac{1}{u} d u}\right)}}=e x - {\color{red}{\left(u \ln{\left(u \right)} - \int{1 d u}\right)}}$$

Aplique a regra da constante $$$\int c\, du = c u$$$ usando $$$c=1$$$:

$$- u \ln{\left(u \right)} + e x + {\color{red}{\int{1 d u}}} = - u \ln{\left(u \right)} + e x + {\color{red}{u}}$$

Recorde que $$$u=x + 1$$$:

$$e x + {\color{red}{u}} - {\color{red}{u}} \ln{\left({\color{red}{u}} \right)} = e x + {\color{red}{\left(x + 1\right)}} - {\color{red}{\left(x + 1\right)}} \ln{\left({\color{red}{\left(x + 1\right)}} \right)}$$

Portanto,

$$\int{\left(e - \ln{\left(x + 1 \right)}\right)d x} = x + e x - \left(x + 1\right) \ln{\left(x + 1 \right)} + 1$$

Adicione a constante de integração (e remova a constante da expressão):

$$\int{\left(e - \ln{\left(x + 1 \right)}\right)d x} = x + e x - \left(x + 1\right) \ln{\left(x + 1 \right)}+C$$

Resposta

$$$\int \left(e - \ln\left(x + 1\right)\right)\, dx = \left(x + e x - \left(x + 1\right) \ln\left(x + 1\right)\right) + C$$$A


Please try a new game Rotatly