Integral de $$$e^{\sqrt[3]{x}}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int e^{\sqrt[3]{x}}\, dx$$$.
Solução
Seja $$$u=\sqrt[3]{x}$$$.
Então $$$du=\left(\sqrt[3]{x}\right)^{\prime }dx = \frac{1}{3 x^{\frac{2}{3}}} dx$$$ (veja os passos »), e obtemos $$$\frac{dx}{x^{\frac{2}{3}}} = 3 du$$$.
A integral torna-se
$${\color{red}{\int{e^{\sqrt[3]{x}} d x}}} = {\color{red}{\int{3 u^{2} e^{u} d u}}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=3$$$ e $$$f{\left(u \right)} = u^{2} e^{u}$$$:
$${\color{red}{\int{3 u^{2} e^{u} d u}}} = {\color{red}{\left(3 \int{u^{2} e^{u} d u}\right)}}$$
Para a integral $$$\int{u^{2} e^{u} d u}$$$, use integração por partes $$$\int \operatorname{\mu} \operatorname{dv} = \operatorname{\mu}\operatorname{v} - \int \operatorname{v} \operatorname{d\mu}$$$.
Sejam $$$\operatorname{\mu}=u^{2}$$$ e $$$\operatorname{dv}=e^{u} du$$$.
Então $$$\operatorname{d\mu}=\left(u^{2}\right)^{\prime }du=2 u du$$$ (os passos podem ser vistos ») e $$$\operatorname{v}=\int{e^{u} d u}=e^{u}$$$ (os passos podem ser vistos »).
A integral pode ser reescrita como
$$3 {\color{red}{\int{u^{2} e^{u} d u}}}=3 {\color{red}{\left(u^{2} \cdot e^{u}-\int{e^{u} \cdot 2 u d u}\right)}}=3 {\color{red}{\left(u^{2} e^{u} - \int{2 u e^{u} d u}\right)}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=2$$$ e $$$f{\left(u \right)} = u e^{u}$$$:
$$3 u^{2} e^{u} - 3 {\color{red}{\int{2 u e^{u} d u}}} = 3 u^{2} e^{u} - 3 {\color{red}{\left(2 \int{u e^{u} d u}\right)}}$$
Para a integral $$$\int{u e^{u} d u}$$$, use integração por partes $$$\int \operatorname{\mu} \operatorname{dv} = \operatorname{\mu}\operatorname{v} - \int \operatorname{v} \operatorname{d\mu}$$$.
Sejam $$$\operatorname{\mu}=u$$$ e $$$\operatorname{dv}=e^{u} du$$$.
Então $$$\operatorname{d\mu}=\left(u\right)^{\prime }du=1 du$$$ (os passos podem ser vistos ») e $$$\operatorname{v}=\int{e^{u} d u}=e^{u}$$$ (os passos podem ser vistos »).
Portanto,
$$3 u^{2} e^{u} - 6 {\color{red}{\int{u e^{u} d u}}}=3 u^{2} e^{u} - 6 {\color{red}{\left(u \cdot e^{u}-\int{e^{u} \cdot 1 d u}\right)}}=3 u^{2} e^{u} - 6 {\color{red}{\left(u e^{u} - \int{e^{u} d u}\right)}}$$
A integral da função exponencial é $$$\int{e^{u} d u} = e^{u}$$$:
$$3 u^{2} e^{u} - 6 u e^{u} + 6 {\color{red}{\int{e^{u} d u}}} = 3 u^{2} e^{u} - 6 u e^{u} + 6 {\color{red}{e^{u}}}$$
Recorde que $$$u=\sqrt[3]{x}$$$:
$$6 e^{{\color{red}{u}}} - 6 {\color{red}{u}} e^{{\color{red}{u}}} + 3 {\color{red}{u}}^{2} e^{{\color{red}{u}}} = 6 e^{{\color{red}{\sqrt[3]{x}}}} - 6 {\color{red}{\sqrt[3]{x}}} e^{{\color{red}{\sqrt[3]{x}}}} + 3 {\color{red}{\sqrt[3]{x}}}^{2} e^{{\color{red}{\sqrt[3]{x}}}}$$
Portanto,
$$\int{e^{\sqrt[3]{x}} d x} = 3 x^{\frac{2}{3}} e^{\sqrt[3]{x}} - 6 \sqrt[3]{x} e^{\sqrt[3]{x}} + 6 e^{\sqrt[3]{x}}$$
Simplifique:
$$\int{e^{\sqrt[3]{x}} d x} = 3 \left(x^{\frac{2}{3}} - 2 \sqrt[3]{x} + 2\right) e^{\sqrt[3]{x}}$$
Adicione a constante de integração:
$$\int{e^{\sqrt[3]{x}} d x} = 3 \left(x^{\frac{2}{3}} - 2 \sqrt[3]{x} + 2\right) e^{\sqrt[3]{x}}+C$$
Resposta
$$$\int e^{\sqrt[3]{x}}\, dx = 3 \left(x^{\frac{2}{3}} - 2 \sqrt[3]{x} + 2\right) e^{\sqrt[3]{x}} + C$$$A