Integral de $$$x e^{2} \cos{\left(2 x \right)}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int x e^{2} \cos{\left(2 x \right)}\, dx$$$.
Solução
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=e^{2}$$$ e $$$f{\left(x \right)} = x \cos{\left(2 x \right)}$$$:
$${\color{red}{\int{x e^{2} \cos{\left(2 x \right)} d x}}} = {\color{red}{e^{2} \int{x \cos{\left(2 x \right)} d x}}}$$
Para a integral $$$\int{x \cos{\left(2 x \right)} d x}$$$, use integração por partes $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Sejam $$$\operatorname{u}=x$$$ e $$$\operatorname{dv}=\cos{\left(2 x \right)} dx$$$.
Então $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (os passos podem ser vistos ») e $$$\operatorname{v}=\int{\cos{\left(2 x \right)} d x}=\frac{\sin{\left(2 x \right)}}{2}$$$ (os passos podem ser vistos »).
Logo,
$$e^{2} {\color{red}{\int{x \cos{\left(2 x \right)} d x}}}=e^{2} {\color{red}{\left(x \cdot \frac{\sin{\left(2 x \right)}}{2}-\int{\frac{\sin{\left(2 x \right)}}{2} \cdot 1 d x}\right)}}=e^{2} {\color{red}{\left(\frac{x \sin{\left(2 x \right)}}{2} - \int{\frac{\sin{\left(2 x \right)}}{2} d x}\right)}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=\frac{1}{2}$$$ e $$$f{\left(x \right)} = \sin{\left(2 x \right)}$$$:
$$e^{2} \left(\frac{x \sin{\left(2 x \right)}}{2} - {\color{red}{\int{\frac{\sin{\left(2 x \right)}}{2} d x}}}\right) = e^{2} \left(\frac{x \sin{\left(2 x \right)}}{2} - {\color{red}{\left(\frac{\int{\sin{\left(2 x \right)} d x}}{2}\right)}}\right)$$
Seja $$$u=2 x$$$.
Então $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (veja os passos »), e obtemos $$$dx = \frac{du}{2}$$$.
A integral pode ser reescrita como
$$e^{2} \left(\frac{x \sin{\left(2 x \right)}}{2} - \frac{{\color{red}{\int{\sin{\left(2 x \right)} d x}}}}{2}\right) = e^{2} \left(\frac{x \sin{\left(2 x \right)}}{2} - \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}}{2}\right)$$
Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=\frac{1}{2}$$$ e $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$$e^{2} \left(\frac{x \sin{\left(2 x \right)}}{2} - \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}}{2}\right) = e^{2} \left(\frac{x \sin{\left(2 x \right)}}{2} - \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{2}\right)}}}{2}\right)$$
A integral do seno é $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$e^{2} \left(\frac{x \sin{\left(2 x \right)}}{2} - \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{4}\right) = e^{2} \left(\frac{x \sin{\left(2 x \right)}}{2} - \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{4}\right)$$
Recorde que $$$u=2 x$$$:
$$e^{2} \left(\frac{x \sin{\left(2 x \right)}}{2} + \frac{\cos{\left({\color{red}{u}} \right)}}{4}\right) = e^{2} \left(\frac{x \sin{\left(2 x \right)}}{2} + \frac{\cos{\left({\color{red}{\left(2 x\right)}} \right)}}{4}\right)$$
Portanto,
$$\int{x e^{2} \cos{\left(2 x \right)} d x} = \left(\frac{x \sin{\left(2 x \right)}}{2} + \frac{\cos{\left(2 x \right)}}{4}\right) e^{2}$$
Simplifique:
$$\int{x e^{2} \cos{\left(2 x \right)} d x} = \frac{\left(2 x \sin{\left(2 x \right)} + \cos{\left(2 x \right)}\right) e^{2}}{4}$$
Adicione a constante de integração:
$$\int{x e^{2} \cos{\left(2 x \right)} d x} = \frac{\left(2 x \sin{\left(2 x \right)} + \cos{\left(2 x \right)}\right) e^{2}}{4}+C$$
Resposta
$$$\int x e^{2} \cos{\left(2 x \right)}\, dx = \frac{\left(2 x \sin{\left(2 x \right)} + \cos{\left(2 x \right)}\right) e^{2}}{4} + C$$$A