Integral de $$$\frac{e^{- x}}{2}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \frac{e^{- x}}{2}\, dx$$$.
Solução
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=\frac{1}{2}$$$ e $$$f{\left(x \right)} = e^{- x}$$$:
$${\color{red}{\int{\frac{e^{- x}}{2} d x}}} = {\color{red}{\left(\frac{\int{e^{- x} d x}}{2}\right)}}$$
Seja $$$u=- x$$$.
Então $$$du=\left(- x\right)^{\prime }dx = - dx$$$ (veja os passos »), e obtemos $$$dx = - du$$$.
Logo,
$$\frac{{\color{red}{\int{e^{- x} d x}}}}{2} = \frac{{\color{red}{\int{\left(- e^{u}\right)d u}}}}{2}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=-1$$$ e $$$f{\left(u \right)} = e^{u}$$$:
$$\frac{{\color{red}{\int{\left(- e^{u}\right)d u}}}}{2} = \frac{{\color{red}{\left(- \int{e^{u} d u}\right)}}}{2}$$
A integral da função exponencial é $$$\int{e^{u} d u} = e^{u}$$$:
$$- \frac{{\color{red}{\int{e^{u} d u}}}}{2} = - \frac{{\color{red}{e^{u}}}}{2}$$
Recorde que $$$u=- x$$$:
$$- \frac{e^{{\color{red}{u}}}}{2} = - \frac{e^{{\color{red}{\left(- x\right)}}}}{2}$$
Portanto,
$$\int{\frac{e^{- x}}{2} d x} = - \frac{e^{- x}}{2}$$
Adicione a constante de integração:
$$\int{\frac{e^{- x}}{2} d x} = - \frac{e^{- x}}{2}+C$$
Resposta
$$$\int \frac{e^{- x}}{2}\, dx = - \frac{e^{- x}}{2} + C$$$A