Integral de $$$e^{\frac{x^{2}}{2}}$$$

A calculadora encontrará a integral/antiderivada de $$$e^{\frac{x^{2}}{2}}$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int e^{\frac{x^{2}}{2}}\, dx$$$.

Solução

Seja $$$u=\frac{\sqrt{2} x}{2}$$$.

Então $$$du=\left(\frac{\sqrt{2} x}{2}\right)^{\prime }dx = \frac{\sqrt{2}}{2} dx$$$ (veja os passos »), e obtemos $$$dx = \sqrt{2} du$$$.

A integral pode ser reescrita como

$${\color{red}{\int{e^{\frac{x^{2}}{2}} d x}}} = {\color{red}{\int{\sqrt{2} e^{u^{2}} d u}}}$$

Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=\sqrt{2}$$$ e $$$f{\left(u \right)} = e^{u^{2}}$$$:

$${\color{red}{\int{\sqrt{2} e^{u^{2}} d u}}} = {\color{red}{\sqrt{2} \int{e^{u^{2}} d u}}}$$

Esta integral (Função erro imaginária) não possui forma fechada:

$$\sqrt{2} {\color{red}{\int{e^{u^{2}} d u}}} = \sqrt{2} {\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erfi}{\left(u \right)}}{2}\right)}}$$

Recorde que $$$u=\frac{\sqrt{2} x}{2}$$$:

$$\frac{\sqrt{2} \sqrt{\pi} \operatorname{erfi}{\left({\color{red}{u}} \right)}}{2} = \frac{\sqrt{2} \sqrt{\pi} \operatorname{erfi}{\left({\color{red}{\left(\frac{\sqrt{2} x}{2}\right)}} \right)}}{2}$$

Portanto,

$$\int{e^{\frac{x^{2}}{2}} d x} = \frac{\sqrt{2} \sqrt{\pi} \operatorname{erfi}{\left(\frac{\sqrt{2} x}{2} \right)}}{2}$$

Adicione a constante de integração:

$$\int{e^{\frac{x^{2}}{2}} d x} = \frac{\sqrt{2} \sqrt{\pi} \operatorname{erfi}{\left(\frac{\sqrt{2} x}{2} \right)}}{2}+C$$

Resposta

$$$\int e^{\frac{x^{2}}{2}}\, dx = \frac{\sqrt{2} \sqrt{\pi} \operatorname{erfi}{\left(\frac{\sqrt{2} x}{2} \right)}}{2} + C$$$A


Please try a new game Rotatly