Integral de $$$\frac{x - 1}{x^{2}}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \frac{x - 1}{x^{2}}\, dx$$$.
Solução
Expand the expression:
$${\color{red}{\int{\frac{x - 1}{x^{2}} d x}}} = {\color{red}{\int{\left(\frac{1}{x} - \frac{1}{x^{2}}\right)d x}}}$$
Integre termo a termo:
$${\color{red}{\int{\left(\frac{1}{x} - \frac{1}{x^{2}}\right)d x}}} = {\color{red}{\left(- \int{\frac{1}{x^{2}} d x} + \int{\frac{1}{x} d x}\right)}}$$
A integral de $$$\frac{1}{x}$$$ é $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:
$$- \int{\frac{1}{x^{2}} d x} + {\color{red}{\int{\frac{1}{x} d x}}} = - \int{\frac{1}{x^{2}} d x} + {\color{red}{\ln{\left(\left|{x}\right| \right)}}}$$
Aplique a regra da potência $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ com $$$n=-2$$$:
$$\ln{\left(\left|{x}\right| \right)} - {\color{red}{\int{\frac{1}{x^{2}} d x}}}=\ln{\left(\left|{x}\right| \right)} - {\color{red}{\int{x^{-2} d x}}}=\ln{\left(\left|{x}\right| \right)} - {\color{red}{\frac{x^{-2 + 1}}{-2 + 1}}}=\ln{\left(\left|{x}\right| \right)} - {\color{red}{\left(- x^{-1}\right)}}=\ln{\left(\left|{x}\right| \right)} - {\color{red}{\left(- \frac{1}{x}\right)}}$$
Portanto,
$$\int{\frac{x - 1}{x^{2}} d x} = \ln{\left(\left|{x}\right| \right)} + \frac{1}{x}$$
Adicione a constante de integração:
$$\int{\frac{x - 1}{x^{2}} d x} = \ln{\left(\left|{x}\right| \right)} + \frac{1}{x}+C$$
Resposta
$$$\int \frac{x - 1}{x^{2}}\, dx = \left(\ln\left(\left|{x}\right|\right) + \frac{1}{x}\right) + C$$$A