Integral de $$$\cot{\left(t \right)}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \cot{\left(t \right)}\, dt$$$.
Solução
Reescreva a cotangente como $$$\cot\left(t\right)=\frac{\cos\left(t\right)}{\sin\left(t\right)}$$$:
$${\color{red}{\int{\cot{\left(t \right)} d t}}} = {\color{red}{\int{\frac{\cos{\left(t \right)}}{\sin{\left(t \right)}} d t}}}$$
Seja $$$u=\sin{\left(t \right)}$$$.
Então $$$du=\left(\sin{\left(t \right)}\right)^{\prime }dt = \cos{\left(t \right)} dt$$$ (veja os passos »), e obtemos $$$\cos{\left(t \right)} dt = du$$$.
Assim,
$${\color{red}{\int{\frac{\cos{\left(t \right)}}{\sin{\left(t \right)}} d t}}} = {\color{red}{\int{\frac{1}{u} d u}}}$$
A integral de $$$\frac{1}{u}$$$ é $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$${\color{red}{\int{\frac{1}{u} d u}}} = {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Recorde que $$$u=\sin{\left(t \right)}$$$:
$$\ln{\left(\left|{{\color{red}{u}}}\right| \right)} = \ln{\left(\left|{{\color{red}{\sin{\left(t \right)}}}}\right| \right)}$$
Portanto,
$$\int{\cot{\left(t \right)} d t} = \ln{\left(\left|{\sin{\left(t \right)}}\right| \right)}$$
Adicione a constante de integração:
$$\int{\cot{\left(t \right)} d t} = \ln{\left(\left|{\sin{\left(t \right)}}\right| \right)}+C$$
Resposta
$$$\int \cot{\left(t \right)}\, dt = \ln\left(\left|{\sin{\left(t \right)}}\right|\right) + C$$$A