Integral de $$$\frac{\sin{\left(2 x \right)}}{\cos^{3}{\left(2 x \right)}}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \frac{\sin{\left(2 x \right)}}{\cos^{3}{\left(2 x \right)}}\, dx$$$.
Solução
Seja $$$u=\cos{\left(2 x \right)}$$$.
Então $$$du=\left(\cos{\left(2 x \right)}\right)^{\prime }dx = - 2 \sin{\left(2 x \right)} dx$$$ (veja os passos »), e obtemos $$$\sin{\left(2 x \right)} dx = - \frac{du}{2}$$$.
A integral torna-se
$${\color{red}{\int{\frac{\sin{\left(2 x \right)}}{\cos^{3}{\left(2 x \right)}} d x}}} = {\color{red}{\int{\left(- \frac{1}{2 u^{3}}\right)d u}}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=- \frac{1}{2}$$$ e $$$f{\left(u \right)} = \frac{1}{u^{3}}$$$:
$${\color{red}{\int{\left(- \frac{1}{2 u^{3}}\right)d u}}} = {\color{red}{\left(- \frac{\int{\frac{1}{u^{3}} d u}}{2}\right)}}$$
Aplique a regra da potência $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ com $$$n=-3$$$:
$$- \frac{{\color{red}{\int{\frac{1}{u^{3}} d u}}}}{2}=- \frac{{\color{red}{\int{u^{-3} d u}}}}{2}=- \frac{{\color{red}{\frac{u^{-3 + 1}}{-3 + 1}}}}{2}=- \frac{{\color{red}{\left(- \frac{u^{-2}}{2}\right)}}}{2}=- \frac{{\color{red}{\left(- \frac{1}{2 u^{2}}\right)}}}{2}$$
Recorde que $$$u=\cos{\left(2 x \right)}$$$:
$$\frac{{\color{red}{u}}^{-2}}{4} = \frac{{\color{red}{\cos{\left(2 x \right)}}}^{-2}}{4}$$
Portanto,
$$\int{\frac{\sin{\left(2 x \right)}}{\cos^{3}{\left(2 x \right)}} d x} = \frac{1}{4 \cos^{2}{\left(2 x \right)}}$$
Adicione a constante de integração:
$$\int{\frac{\sin{\left(2 x \right)}}{\cos^{3}{\left(2 x \right)}} d x} = \frac{1}{4 \cos^{2}{\left(2 x \right)}}+C$$
Resposta
$$$\int \frac{\sin{\left(2 x \right)}}{\cos^{3}{\left(2 x \right)}}\, dx = \frac{1}{4 \cos^{2}{\left(2 x \right)}} + C$$$A