Integral de $$$\cos{\left(5 x^{2} \right)}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \cos{\left(5 x^{2} \right)}\, dx$$$.
Solução
Seja $$$u=\sqrt{5} x$$$.
Então $$$du=\left(\sqrt{5} x\right)^{\prime }dx = \sqrt{5} dx$$$ (veja os passos »), e obtemos $$$dx = \frac{\sqrt{5} du}{5}$$$.
Portanto,
$${\color{red}{\int{\cos{\left(5 x^{2} \right)} d x}}} = {\color{red}{\int{\frac{\sqrt{5} \cos{\left(u^{2} \right)}}{5} d u}}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=\frac{\sqrt{5}}{5}$$$ e $$$f{\left(u \right)} = \cos{\left(u^{2} \right)}$$$:
$${\color{red}{\int{\frac{\sqrt{5} \cos{\left(u^{2} \right)}}{5} d u}}} = {\color{red}{\left(\frac{\sqrt{5} \int{\cos{\left(u^{2} \right)} d u}}{5}\right)}}$$
Esta integral (Integral de Fresnel do cosseno) não possui forma fechada:
$$\frac{\sqrt{5} {\color{red}{\int{\cos{\left(u^{2} \right)} d u}}}}{5} = \frac{\sqrt{5} {\color{red}{\left(\frac{\sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} u}{\sqrt{\pi}}\right)}{2}\right)}}}{5}$$
Recorde que $$$u=\sqrt{5} x$$$:
$$\frac{\sqrt{10} \sqrt{\pi} C\left(\frac{\sqrt{2} {\color{red}{u}}}{\sqrt{\pi}}\right)}{10} = \frac{\sqrt{10} \sqrt{\pi} C\left(\frac{\sqrt{2} {\color{red}{\sqrt{5} x}}}{\sqrt{\pi}}\right)}{10}$$
Portanto,
$$\int{\cos{\left(5 x^{2} \right)} d x} = \frac{\sqrt{10} \sqrt{\pi} C\left(\frac{\sqrt{10} x}{\sqrt{\pi}}\right)}{10}$$
Adicione a constante de integração:
$$\int{\cos{\left(5 x^{2} \right)} d x} = \frac{\sqrt{10} \sqrt{\pi} C\left(\frac{\sqrt{10} x}{\sqrt{\pi}}\right)}{10}+C$$
Resposta
$$$\int \cos{\left(5 x^{2} \right)}\, dx = \frac{\sqrt{10} \sqrt{\pi} C\left(\frac{\sqrt{10} x}{\sqrt{\pi}}\right)}{10} + C$$$A