Integral de $$$- \frac{\pi^{\pi} \sin{\left(x \right)}}{x}$$$

A calculadora encontrará a integral/antiderivada de $$$- \frac{\pi^{\pi} \sin{\left(x \right)}}{x}$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int \left(- \frac{\pi^{\pi} \sin{\left(x \right)}}{x}\right)\, dx$$$.

Solução

Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=- \pi^{\pi}$$$ e $$$f{\left(x \right)} = \frac{\sin{\left(x \right)}}{x}$$$:

$${\color{red}{\int{\left(- \frac{\pi^{\pi} \sin{\left(x \right)}}{x}\right)d x}}} = {\color{red}{\left(- \pi^{\pi} \int{\frac{\sin{\left(x \right)}}{x} d x}\right)}}$$

Esta integral (Integral seno) não possui forma fechada:

$$- \pi^{\pi} {\color{red}{\int{\frac{\sin{\left(x \right)}}{x} d x}}} = - \pi^{\pi} {\color{red}{\operatorname{Si}{\left(x \right)}}}$$

Portanto,

$$\int{\left(- \frac{\pi^{\pi} \sin{\left(x \right)}}{x}\right)d x} = - \pi^{\pi} \operatorname{Si}{\left(x \right)}$$

Adicione a constante de integração:

$$\int{\left(- \frac{\pi^{\pi} \sin{\left(x \right)}}{x}\right)d x} = - \pi^{\pi} \operatorname{Si}{\left(x \right)}+C$$

Resposta

$$$\int \left(- \frac{\pi^{\pi} \sin{\left(x \right)}}{x}\right)\, dx = - \pi^{\pi} \operatorname{Si}{\left(x \right)} + C$$$A


Please try a new game Rotatly